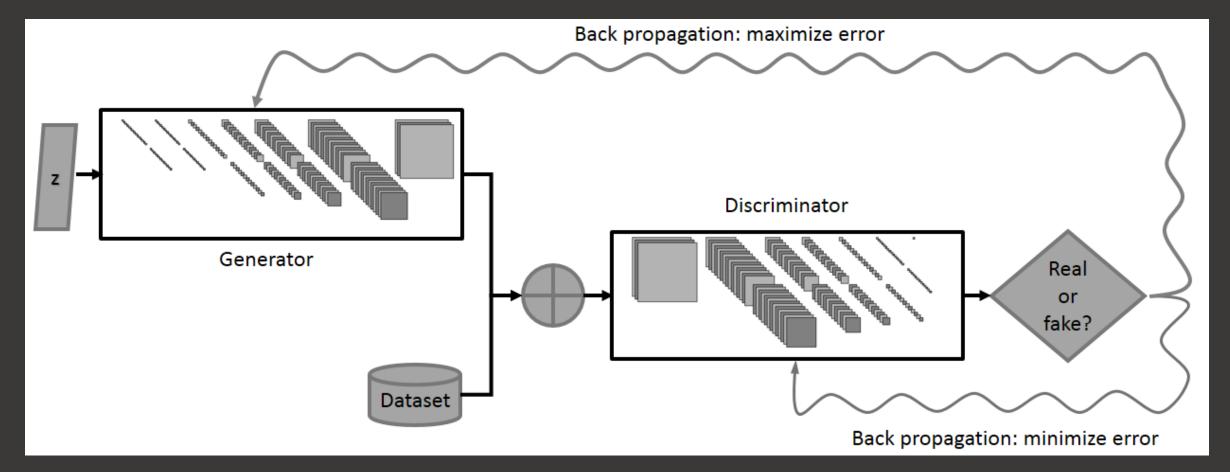
Generative Adversarial Networks with Memory for Text Generation

Emily Sheetz

Overview

- Project Description
- Generative Adversarial Networks (GANs)
- Recurrent Network Architectures
- Learning Algorithms
- Tools and Project Timeline
- Socio-Technical Context


Project Description

- Train a neural network to generate sentences of horror text
- Generate samples at the character level
- Evaluate the quality of generated samples through survey
- Qualitative measurement

Generative Adversarial Networks (GANs)

- Framework containing two neural networks
- Generator (G) attempts to generate samples that could be from the dataset
- Discriminator (D) attempts to determine which samples are from the generator or from the data set

GAN Training Process

Heinrich, Greg. "Photo Editing with Generative Adversarial Networks (Part 1)." NVIDIA, Parellel Forall (2017). Accessed Aug. 2017.

Recurrent Neural Networks

- Generator and discriminator need memory for long-term structure
- Recurrent neural networks (RNNs) feed outputs from previous time steps back into network
- Output probability distribution of next element in sequence conditioned on previous elements

Recurrent Network Architectures

- RNNs do not train well within GAN framework
- Long Short-Term Memory Networks (LSTMs):
 - Selectively remember new information and forget information from previous time steps
 - Learn more complex long-term relationships than RNN
- Gated Recurrent Units (GRUs):
 - Comparable performance to LSTMs
 - Fewer parameters than LSTMs, meaning more computationally efficient

Work with Network Architectures

- GAN with GRUs for memory (Press et al.)
 - Python and TensorFlow
 - Problems running, but sample code for GAN
- TensorFlow tutorial with LSTMs
 - LSTMs for language modeling, predicting next word in sequence
 - Training time estimate, sample code for LSTM

Learning Algorithms

- Curriculum Learning: increase length of generated sequences
- Variable Length Outputs: allow for output sequences less than or equal to maximum length
- Teacher Helping: generator conditioned on samples in training data

Tools

- Project Gutenberg
- Python
- TensorFlow

Project Timeline

- Checkpoint 1: Script for text preprocessing
- Checkpoint 2: Run code from previous work, extend to horror text, architecture of network
- Checkpoint 3: Code GAN framework, LSTMs for memory
- Checkpoint 4: Code LSTMs, implement learning algorithms
- Checkpoint 5: Train GAN
- Checkpoint 6: Survey opinions on quality of text

Socio-Technical Context

- Humans tell stories to communicate
- Artificial intelligence given human-like intelligence through storytelling
- Horror elicits strong emotions
- Emotions of horror fiction depend on person
- Al participating in human tasks

Concluding Remarks

- GAN with LSTMs for memory
- Generate sentences of horror text
- Qualitative evaluation of quality of generated samples
- Human aspect of stories
- Artificial intelligence participating in human task of storytelling

Select Bibliography

- Goodfellow, Ian, et al. "Generative Adversarial Nets." *Advances in Neural Information Processing Systems*. 2014.
- Heinrich, Greg. "Photo Editing with Generative Adversarial Networks (Part 1)." NVIDIA, Parallel Forall, devblogs.nvidia.com/parallelforall/photo-editing-generative-adversarial-networks-1/. 2017. Accessed Aug. 2017.
- Horror Writers Association. "What is Horror Fiction?" *Horror Writers Association*, http://horror.org/horroris.htm. 2009. Accessed Nov. 2017.
- Press, Ofir, et al. "Language Generation with Recurrent Generative Adversarial Networks without Pretraining." *arXiv preprint arXiv:1706.01399*. 2017.
- Rajeswar, Sai, et al. "Adversarial Generation of Natural Language." arXiv preprint arXiv:1705.10929. 2017.
- Riedl, Mark. "Why Artificial Intelligence Should Read and Write Stories." *Huffington Post*, www.huffingtonpost.com/mark-riedl/why-artificial-intelligen_b_8287478.html. 2015. Accessed Oct. 2017.
- TensorFlow. "Recurrent Neural Networks." *TensorFlow*, www.tensorflow.org/tutorials/recurrent. 2017. Accessed Oct. 2017.
- Xiao, Xuerong. "Text Generation using Generative Adversarial Training." *Stanford University*. 2017.