Optimized Snapshot-Based Visual Homing for UAVs
 Emily Sheetz, James Brown, Richard Chapman, and Saad Biaz

AUBURN
UNIVERSITY

Outline

- Problem
- Theoretical Background
- Approach
- Results

Problem: Visual Homing

- Return to starting location
- Determining possible optimal return flights
- Practical applications
- Increases safety for users

Motivation for Visual Approach

- Issues with GPS: loss of signal, jamming, or spoofing
- Cameras are lightweight and can multitask
- Sparse representation of the environment
- More reliable than maps or GPS

Background

- Biologically inspired systems use visual cues for navigation
- Retracing steps through feature matching
- Potential for path optimization
- Project points from current view to reference images
- Homography control for snapshot-based navigation

Homography

- Relates two images using common features viewed from different angles

$$
\begin{gathered}
p_{r}=\boldsymbol{H} p_{c} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Computing the Homography

- Given four points in current camera view and corresponding points in reference image:

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1} x^{\prime}{ }_{1} & -y_{1} x^{\prime}{ }_{1} & -x^{\prime}{ }_{1} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1}{y^{\prime}}_{1} & -y_{1}{y^{\prime}}_{1} & -y^{\prime}{ }_{1} \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 & -x_{2} x^{\prime}{ }_{2} & -y_{2} x^{\prime}{ }_{2} & -x^{\prime}{ }_{2} \\
0 & 0 & 0 & x_{2} & y_{2} & 1 & -x_{2} y^{\prime}{ }_{2} & -y_{2}{y^{\prime}}^{2} & -y^{\prime}{ }_{2} \\
x_{3} & y_{3} & 1 & 0 & 0 & 0 & -x_{3} x^{\prime}{ }_{3} & -y_{3} x^{\prime}{ }_{3} & -x^{\prime}{ }_{3} \\
0 & 0 & 0 & x_{3} & y_{3} & 1 & -x_{3} y^{\prime}{ }_{3} & -y_{3}{y^{\prime}}_{3} & -y^{\prime}{ }_{3} \\
x_{4} & y_{4} & 1 & 0 & 0 & 0 & -x_{4} x^{\prime}{ }_{4} & -y_{4} x^{\prime}{ }_{4} & -x^{\prime}{ }_{4} \\
0 & 0 & 0 & x_{4} & y_{4} & 1 & -x_{4} y^{\prime}{ }_{4} & -y_{4} y^{\prime}{ }_{4} & -y^{\prime}{ }_{4}
\end{array}\right]\left[\begin{array}{l}
h_{11} \\
h_{12} \\
h_{13} \\
h_{21} \\
h_{22} \\
h_{23} \\
h_{31} \\
h_{32} \\
h_{33}
\end{array}\right]=\overrightarrow{0}
$$

Homography Control Law

- Compute direction vector to align UAV with reference image
- Based on center of gravity of feature points

$$
\begin{gathered}
\bar{p}_{r}=\frac{1}{n} \sum_{i=1}^{n} p_{r_{i}} \quad \bar{p}_{c}=\frac{1}{n} \sum_{i=1}^{n} p_{c_{i}} \\
\vec{v}=\frac{\bar{p}_{r}^{T} \boldsymbol{H} \bar{p}_{c}}{\bar{p}_{r}^{T} \bar{p}_{c}} \bar{p}_{r}-\bar{p}_{c}
\end{gathered}
$$

Simulation Framework

- Downward facing "camera"
- Exploratory journey:
- Random walk
- Snapshot taken periodically and stored along the way
- Return journey:
- Periodically compute homography estimation
- Homography control law directs UAV to snapshot
- Normalized direction vectors to navigate

Approach to Problem

Visual Homing

- Sparse snapshots represent environment
- Homography control law navigates between snapshots
- Series of local homing problems, visiting waypoints and retracing steps

Visual Path Optimization

- Option for path optimization on return journey
- Brute force feature matching between snapshots
- If snapshots are close together, UAV does not retrace path between them

Tools

- MATLAB
- Simulink
- Robotics Operating System (ROS)
- Python
- OpenCV

Experiments

- Visual homing with and without path optimization
- Three environments
- Suburb
- Desert
- Forest
- Tested 15 random paths across 5 different positions on map

Sample Suburb Experiment

Sample Desert Experiment

Sample Forest Experiment

Results

Test	Successful Homing	Successful Optimized Homing	Average Distance Reduced
Suburb	87%	85%	48%
Desert	100%	67%	54%
Forest	93%	50%	59%
Overall	$\mathbf{9 3 \%}$	$\mathbf{6 7 \%}$	$\mathbf{5 3 \%}$

Summary

- Visual homing motivated by issues with GPS
- Our approach combined ideas from several papers
- Sparse snapshot representation
- Homography control law
- Visual path optimization possible
- Simulations show successful visual homing
- Optimized paths significantly reduced travel distance
- Application of multiple view geometry in computer vision

Select Bibliography

- Cumbo, Kodi CA, et al. "Bee-Inspired Landmark Recognition in Robotic Navigation." Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. ACM, 2016.
- Denuelle, Aymeric, and Mandyam V. Srinivasan. "Bio-inspired Visual Guidance: From Insect Homing to UAS Navigation." Robotics and Biomimetics (ROBIO), 2015 IEEE International Conference on. IEEE, 2015.
- Denuelle, Aymeric, and Mandyam V. Srinivasan. "A Sparse Snapshot-Based Navigation Strategy for UAS Guidance in Natural Environments." Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE, 2016.
- Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2003.
- Lewis, Benjamin P., and Randal W. Beard. "A Framework for Visual Return-to-Home Capability in GPSDenied Environments." Unmanned Aircraft Systems (ICUAS), 2016 International Conference on. IEEE, 2016.
- Li, Chang, and Xudong Wang. "Jamming Research of the UAV GPS/INS Integrated Navigation System Based on Trajectory Cheating." Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), International Congress on. IEEE, 2016.

Deriving Homography Matrix Equation

- We want to find the matrix that relates two matched points in different images:

$$
\begin{aligned}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
x^{\prime} & =x h_{11}+y h_{12}+h_{13} \\
y^{\prime} & =x h_{21}+y h_{22}+h_{23} \\
1 & =x h_{31}+y h_{32}+h_{33}
\end{aligned}
$$

Deriving Homography Matrix Equation

- We know:

$$
\begin{gathered}
x^{\prime}=x h_{11}+y h_{12}+h_{13} \\
1=x h_{31}+y h_{32}+h_{33} \\
x^{\prime} * 0=0 \\
x^{\prime} *(1-1)=0 \\
x^{\prime} *\left(1-\left(x h_{31}+y h_{32}+h_{33}\right)\right)=0 \\
x^{\prime}-x x^{\prime} h_{31}-y x^{\prime} h_{32}-x^{\prime} h_{33}=0 \\
x h_{11}+y h_{12}+h_{13}-x x^{\prime} h_{31}-y x^{\prime} h_{32}-x^{\prime} h_{33}=0
\end{gathered}
$$

Deriving Homography Matrix Equation

- We know:

$$
\begin{gathered}
y^{\prime}=x h_{21}+y h_{22}+h_{23} \\
1=x h_{31}+y h_{32}+h_{33} \\
y^{\prime} * 0=0 \\
y^{\prime} *(1-1)=0 \\
y^{\prime} *\left(1-\left(x h_{31}+y h_{32}+h_{33}\right)\right)=0 \\
y^{\prime}-x y^{\prime} h_{31}-y y^{\prime} h_{32}-y^{\prime} h_{33}=0 \\
x h_{21}+y h_{22}+h_{23}-x y^{\prime} h_{31}-y y^{\prime} h_{32}-y^{\prime} h_{33}=0
\end{gathered}
$$

Deriving Homography Matrix Equation

- We have shown:

$$
\begin{aligned}
& x h_{11}+y h_{12}+h_{13}-x x^{\prime} h_{31}-y x^{\prime} h_{32}-x^{\prime} h_{33}=0 \\
& x h_{21}+y h_{22}+h_{23}-x y^{\prime} h_{31}-y y^{\prime} h_{32}-y^{\prime} h_{33}=0
\end{aligned}
$$

- We can rewrite into a matrix equation

$$
\left[\begin{array}{lllllllll}
x & y & 1 & 0 & 0 & 0 & -x x^{\prime} & -y x^{\prime} & -x^{\prime} \\
0 & 0 & 0 & x & y & 1 & -x y^{\prime} & -y y^{\prime} & -y^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{11} \\
h_{12} \\
h_{23} \\
h_{21} \\
h_{22} \\
h_{23} \\
h_{31} \\
h_{32} \\
h_{33}
\end{array}\right]=\overrightarrow{0}
$$

Deriving Homography Matrix Equation

$$
\left[\begin{array}{lllllllll}
x & y & 1 & 0 & 0 & 0 & -x x^{\prime} & -y x^{\prime} & -x^{\prime} \\
0 & 0 & 0 & x & y & 1 & -x y^{\prime} & -y y^{\prime} & -y^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{11} \\
h_{12} \\
h_{13} \\
h_{21} \\
h_{22} \\
h_{23} \\
h_{31} \\
h_{32} \\
h_{33}
\end{array}\right]=\overrightarrow{0}
$$

