Modeling A Soap Bubble Rupture

Department of Mathematics and Computer Science

Morgan Holle, Devin King, Emily Sheetz, and Dr. Michael Sostarecz

Fitting a Circle in Two Dimensions

Given three non-colinear points it is possible to determine the equation of a circle intersecting the points:

$$
\begin{aligned}
& \left(x_{1}-x_{c}\right)^{2}+\left(y_{1}-y_{c}\right)^{2}=r^{2} \\
& \left(x_{2}-x_{c}\right)^{2}+\left(y_{2}-y_{c}\right)^{2}=r^{2} \\
& \left(x_{3}-x_{c}\right)^{2}+\left(y_{3}-y_{c}\right)^{2}=r^{2}
\end{aligned}
$$

The radius can be eliminated:

$$
\begin{aligned}
& \left(x_{1}-x_{c}\right)^{2}+\left(y_{1}-y_{c}\right)^{2}=\left(x_{3}-x_{c}\right)^{2}+\left(y_{3}-y_{c}\right)^{2} \\
& \left(x_{2}-x_{c}\right)^{2}+\left(y_{2}-y_{c}\right)^{2}=\left(x_{3}-x_{c}\right)^{2}+\left(y_{3}-y_{c}\right)^{2}
\end{aligned}
$$

which allows for the solving of the x-center and y -center (E . Sheetz solved this by hand):
 $2 x_{1} y_{2}-2 x_{1} y_{3}-2 x_{2} y_{1}+2 x_{2} y_{3}+2 x_{3} y_{1}-2 x_{3} y_{2}$
$y_{c}=\frac{x_{2} x_{1}^{2}-x_{2} x_{3}^{2}+x_{2} y_{1}^{2}-x_{2} y_{3}^{2}-x_{3} x_{1}^{2}+x_{3}^{3}-x_{3} y_{1}^{2}+x_{3} y_{3}^{2}-x_{1} x_{2}^{2}+x_{1} x_{3}^{2}-x_{1} y_{2}^{2}+x_{1} y_{3}^{2}+x_{3} x_{2}^{2}-x_{3}^{3}+x_{3} y_{2}^{2}-x_{3} y_{3}^{2}}{-2 x_{1} y_{2}+2 x_{1} y_{3}+2 x_{2} y_{1}-2 x_{2} y_{3}-2 x_{3} y_{1}+2 x_{3} y_{2}}$

Solution in Three Dimensions

After solving the 2D problem, the more difficult 3D problem could be attempted. Given three non-colinear points it is possible to determine the equation of a circle in 3D space intersecting the points:

$$
\begin{aligned}
& \left(x_{1}-x_{c}\right)^{2}+\left(y_{1}-y_{c}\right)^{2}+\left(z_{1}-z_{c}\right)^{2}=r^{2} \\
& \left(x_{2}-x_{c}\right)^{2}+\left(y_{2}-y_{c}\right)^{2}+\left(z_{2}-z_{c}\right)^{2}=r^{2} \\
& \left(x_{3}-x_{c}\right)^{2}+\left(y_{3}-y_{c}\right)^{2}+\left(z_{3}-z_{c}\right)^{2}=r^{2}
\end{aligned}
$$

For each frame, three data points were collected along the outer edge of the puncture hole(s) along with the center location of the bubble.

After acquiring the data, it was decided that first solving a simpler problem would assist in solving the more complex problem of modeling the bubble rupture in three dimensions.

The data points collected for each frame were used to produce a 3D representation using this technique. The time between each image below is 6 ms .

The graph below shows the rate of expansion of the entrance hole of the bubble over time.

