Optimized Snapshot-based Visual Homing for UAVs
Technical Report #CSSE17-05

Sheetz, Emily Brown, James F.
Monmouth College Southern Connecticut State U.
esheetz@monmouthcollege.edu brownj78@southernct.edu
Chapman, Richard Saad, Biaz
Auburn University Auburn University
chapmro@auburn. edu biazsaa®@auburn.edu

July 13, 2017

Abstract

As unmanned aerial vehicles (UAVs) are more widely used, visual homing becomes an increasingly
important area of research. Several researchers explore visual navigation or visual target finding on
UAVs or ground robots with promising results in simulations and implementation. To explore new
approaches for UAV visual homing, techniques for image processing and machine learning must be
carefully evaluated, selected, and implemented in order to develop a system that is efficient and practical
for real time applications. This work explores a unique visual homing approach for UAVs. Snapshots
taken during the UAV’s exploratory journey from home create a sparse representation of the traveled
path. Feature extraction and brute force feature matching are used to estimate the homography between
reference snapshots and camera images on the return journey. The homography is then used to navigate
the UAV home. The same feature matching techniques are used in a visual approach to path optimization.
This approach allows the UAV to follow near-optimal return paths based on similarities between saved
snapshots. These techniques were tested in simulation and showed promising results for accurate and
near-optimal visual navigation to home.

1 Introduction

Unmanned aerial vehicles (UAVs) have become an important area of research. UAVs are used in military
as well as civilian applications, such as search and rescue, structure inspection, and environmental surveying
[10]. However, the operational safety of UAVs continues to be a concern. Visual homing—the UAV’s ability
to return to the starting position after exploring an area—could continue improving safety and practicality
by preventing crashes and aircraft loss.

Much of the research on visual homing has been implemented on ground robots. Although research on
visual navigation, target finding, and homing has been done on UAVs, these methods could be improved by
combining techniques used by different research teams. Visual homing in the absence of GPS signals is an
important problem to solve as it would make UAV operation easier and safer.

1.1 Related Work

Visual homing for unmanned aerial vehicles (UAVs) has become an important topic of research due to
the flaws of GPS navigation. A third party can use a jammer to intercept satellite communications to the
UAV and send incorrect coordinates to the aircraft. By sending false coordinates from the jammer to the

UAV, a third party would be able to hijack the flight path of the aircraft [17]. Visual homing can add a
layer of security to UAV navigation by providing an alternative to easily compromised GPS signals.

Visual homing also offers advantages over other navigation techniques. Cameras are less expensive and can
replace bulkier sensors, which is important due to the small payload of UAVs. In addition, camera equipment
consumes less power than laser or LIDAR, allowing the UAV to stay in the air longer. Computer vision can
also multi-task, with the camera serving as the primary sensor for navigation as well as other missions [10].
Visual homing can provide a sparse representation of the environment, often through a number of snapshots
taken by the UAV during its flight. These images can be used for navigation and are independent of maps,
which may be imprecise. Path planning and navigation based on snapshots can be done with relatively low
computation [18]. Furthermore, the Federal Aviation Administration (FAA) regulations assume that pilots
rely on vision, specifically that pilots must “see and avoid” other aircraft [21]. Visual navigation of UAVs
offers distinct advantages over other navigation techniques.

Problems similar to visual homing include visual navigation and visual target finding. In the event of
GPS jamming or GPS failure, computer vision can be used to approximate the position of the ground robot
or UAV, making navigation possible [6] [22]. In research conducted by ChengHao, et al., ground images, or
snapshots, were stitched together to create a map of the environment. By combining on-board cameras and
an inertial navigation system (INS), the position of the UAV could be approximated [7]. Similarly, in UAV
swarms, communication between drones can allow for accurate position estimation and navigation when
some of the drones do not have a working GPS [23]. These experiments rely on previous GPS information
for navigation [19]. Although the techniques used to address the problem of visual navigation can be applied
to visual homing, this project differs in that the research addresses visual homing in the complete absence
of GPS information.

Visual target finding is another problem related to visual homing. In research done by Cumbo, et al., the
homing strategies of bees inspired the techniques through which a ground robot learned to use landmarks
in the environment to approach a particular target. Even when the target was not present, the robot could
navigate to the area the target had been based on the landmarks. In some cases, when the target was
moved, the robot used landmarks to approach the area and found the target from there. However, when the
landmarks were removed, the ground robot could not find the target unless its starting position was relatively
close to the target [9]. In this case, the learned target finding was specific to the environment. Once the
environment changed by removing the landmarks, the ground robot often could not find its target. While
visual homing can be thought of as visual target finding—with the home position being the target—this
project’s approach to visual homing will be more robust since it will not be environment specific.

There are a variety of approaches to visual homing. Many of these approaches are based on the behav-
iors of insects such as bees, since they are able to navigate home with poor resolution vision and limited
computational brain power [10]. Visual homing includes long-range homing—where the target is not in
view—and local homing—where the target is in view [11]. The task of image processing can be achieved
through image-based or feature-based approaches. Using the whole image has the advantage of eliminating
the need for expensive feature extraction and guarantees a solution that is not dependent on landmarks
specific to a particular environment [2]. Feature-based visual homing involves the tasks of feature extraction
and feature or image matching [22]. The visual homing approach used in this paper will address long-range
homing using feature-based image processing.

Feature extraction is the first task of feature-based visual homing. This task can be approached with
feature preselection—in which the UAV navigates by matching images from the camera to snapshots—or
without feature preselection—in which flow-based matching methods, such as optic flow, are used to estimate
how much features move [3].

The second task of feature-based visual homing is image matching. Because extracting features from
an image can be time consuming and computationally expensive, researchers take unique approaches to
minimize the total time and computation costs. By reducing an image down to a number of critical points—
the criteria for “critical” will depend on the application—the cost function for image matching techniques can
be computed only on the select points, rather than every pixel in the image, without losing information [26].
Similarly, knowing only the observed scale and the bearing of select key points which are visible from both

the current position of the UAV and the home position, visual homing can be achieved by matching the key
points [18].

Image matching depends on being able to match the images taken on the exploratory journey away from
the home position with the images the UAV sees on its return journey. In order to compare these images
taken from different angles, a homography can be used. The relationship between different images—the
homography—can be evaluated by comparing the positions of four or more pairs of reference points in the
images. The homography can then be used to compute the control vector, which tells the UAV in which
direction to continue home. Research done by Lewis and Beard shows that a homography can be used
to achieve effective visual homing in GPS denied environments [16]. Research by DeTone, Malisiewicz,
and Rabinovich shows that given two images, deep convolutional neural networks can learn to compute
the homography relating the two images. This method has the advantage of avoiding feature extraction
and feature matching, as the neural network is able to directly estimate the homography from the two
images [12]. Other research has used machine learning and neural networks for various tasks involved in
visual navigation [2,3,6,9,22]. This paper proposes using a convolutional neural network to extract features
from the reference snapshots and the camera images and compute the homography relating the two images,
achieving both the feature extraction and the image matching tasks in the application of visual homing.

Using a series of snapshots taken during the exploratory journey away from the home position, UAVs can
match current camera images to the snapshots to navigate back home. As explained in research by Denuelle
and Srinivasan, using snapshots for visual homing turns the problem of long-range visual homing into a series
of target finding problems through visiting local waypoints. By visiting each of the waypoints represented
by the snapshots, the UAV will reach its home position. Snapshots also allow for a sparse representation of
the environment [11]. The project presented here uses a similar sparse-snapshot approach and deconstructs
the task of visual homing to the task of visiting a series of snapshot waypoints.

Achieving visual homing by visiting a series of snapshot waypoints is equivalent to the UAV retracing the
steps it took to reach its goal position. While this technique will allow the UAV to reach its home position,
the return journey could be inefficient. The snapshot-based visual navigation scheme proposed by Denuelle
and Srinivasan achieved some path optimization, particularly with repeated journeys between the home and
goal locations [11]. Unique approaches to visual homing could consider techniques for optimizing the return
journey to home.

Research in path optimization typically focuses on finding optimal paths between given starting and
ending positions using numerical methods. When searching a region for a particular target, the generated
path must be optimal in terms of area coverage, search path length, and search time [1]. Using landmarks,
Babel developed a numerical method for finding an optimal path between a given start and end point for
a UAV with visual navigation capabilities. This method creates a network of possible paths, and the best
path is selected from the generated network. The best path is considered optimal in terms of length, the
sequence of landmarks visited, and the distance between landmarks for navigation updates [4].

Snapshot-based visual homing techniques serve as a method for preselecting a series of landmarks along
the UAV’s journey to home. The start and end points of the path are also predetermined by the exploratory
journey. The approach to path optimization presented in this paper will differ from previous research by
exploring a visual approach rather than a numerical approach. The advantage of a visual approach to path
optimization is that only data gathered from the snapshots taken on the exploratory journey is used to
create a near-optimal path. Furthermore, the logic that achieves feature extraction and feature matching
for homography computation can be reused for path optimization.

1.2 Contributions

Based on previous research that addresses visual navigation or visual homing for ground robots, the aim
of this project is to bring the navigation strategies developed on land into the air. With respect to the
research that addresses visual homing in UAVs, the goal is to combine techniques to find a novel solution to
visual homing.

This paper addresses long-range visual homing with no previous GPS information. Snapshots will be

taken during the exploratory journey away from home with minimal overlap to create a sparse representation
of the path. The homography between snapshots and images from the on-board camera will be computed
using feature extraction and brute force feature matching. The homography will be used to direct the UAV
to each of the reference snapshots. This approach achieves visual homing that is not environment specific.

The visual homing scheme will also have an option for optimization of the return path to home. After the
UAV has finished its exploratory journey, the features of the snapshots will be compared. Snapshots with
closely matched features will be considered to represent nearby locations in the path, and any snapshots
in between will be eliminated from the return journey. This scheme will detect and avoid closed loops in
the random exploratory journey, for near-optimal return paths to home. While at least one snapshot will
be eliminated from the return journey, the waypoints that could not be optimized will each be visited. At
some point, the UAV will have to retrace its steps to home. However, preprocessing the snapshots to nearly
optimize the return journey will reduce the distance and time traveled to home.

The methods presented will be tested in a simulated environment based on the work of Lewis and
Beard [16], which was generated in MATLAB and Simulink. The Robotics Operating System (ROS) was
used to interface with the simulated UAV, with the ROS master being hosted in MATLAB. Python and the
open source image processing library OpenCV were used for the image processing tasks of feature extraction
and feature matching. Past “See And Avoid” research by Morgan and Jones demonstrates the effective
coupling of similar technologies [21]. By combining the techniques used for visual homing in ground vehicles
and in UAVs, this research will explore a novel approach to the problem of visual homing for UAVs.

1.3 Organization of the Paper

The remainder of the paper is organized as follows: Section 2 details the theory that motivates the
approach. The methods used to achieve and test this visual homing framework are explained in Section 3.
Section 4 discusses the results of the simulations. Potential future work is outlined in Section 5. Finally,
Section 6 explores the conclusions of the research.

2 Theoretical Background

The theory and computation behind homographies and homography control law are central to the opti-
mized approach to visual homing proposed by this research. This section of the paper draws from the book
Multiple View Geometry in Computer Vision by Hartley and Zisserman about projective transformations [14]
and the work done by Lewis and Beard about homography control law [16]. Though outside of the scope of
this project, this section will also briefly discuss research from DeTone, Malisiewicz, and Rabinovich about
convolutional neural networks and homography estimation. However, this project handles image processing
for homography computation in Python using OpenCV’s ORB feature detection and brute force feature
matching. The homography estimation was used to navigate the UAV home.

2.1 Projective Transformations

Computer vision forces certain assumptions to be made in order to model the three-dimensional world.
Images project a 3D scene into two dimensions. This projective transformation does not preserve shapes,
lengths, angles, distances, or ratios of distances, as these geometric features can be distorted based on how
an image is taken. However, straightness is preserved by such projections. To work with this geometric
property, these models, called projective spaces, assume that two lines always meet. To create a projective
space P", extend the Euclidean space R™ to include points at infinity. This ensures that parallel lines in the
projection will meet at points in the projective space, namely a point at infinity.

To model the world and work with the 2D image representations of the world, computer vision assumes
that the world is a 3D projective space and the image corresponds to a 2D projective space. A pixel (z,y)7 in
an image corresponds to the homogeneous coordinates (z,y,1)? in the projective space P2. The coordinates

of the points in P" are vectors with n 4+ 1 elements, where the n 4+ 1 element is a constant, k. In fact, the
point (x,y,1)T in P? defines an equivalence class:

T kx
y | ~ | ky (1)
1 k

Any point that can be related to (z,y,1)T through some constant k is considered equivalent to (x,y,1)%.

It is useful to relate points in the world—represented by projective space P3—to points in the image of the
world—projective space P?. For example, consider a point in the three-dimensional world with homogeneous
coordinates (X,Y,Z,T)" in P3. Suppose this point corresponds to a point in the two-dimensional image
with homogeneous coordinates (z,y,w)? in P2. This means that the image point (z,y,w)” represents the
homogeneous coordinates to the point (X,Y,Z,T)?. These homogeneous points can be related by a linear
transformation:

. X
Y
y | =Psxsa 7 (2)
v T
where
1 0 0 O
Psya=|0 1 0 0 (3)
0 0 1 0

The linear transformation in Equation 2 simply eliminates the final element of the point in projective space
P3 to find the homogeneous coordinates in projective space P2.

A projective transformation represents the relationship between points that lie in the same plane. For
example, a projective transformation could relate corresponding points between two images. Consider again
the points (X, Y, Z,T)T in P? and (z,y,w)” in P2—equivalent, homogeneous points—and suppose that each
point is captured in one of two images. Because these corresponding points in the two images lie in the same
plane, let Z = 0. The projective transformation between these two points can be expressed as:

T X
y | =Psxz | Y (4)
w T

The matrix P in Equation 4 represents the projective transformation relating the two points.

The next sections will describe the applications of the theory of projective transformations more specif-
ically to the task of visual homing using two images. More information on multiple view geometries and
projective transformations can be found in Multiple View Geometry in Computer Vision by Hartley and
Zisserman [14].

2.2 Homography

When a landscape is viewed by the same camera from two different angles, the resulting images can be
related using a homography [16]. The homography H is a 3 x 3 matrix that can be found by relating at least
four points—three of which must be noncollinear—from the current image p. to the matching points in the
reference image p,.. Once the homography is found, the two images can be related to one another with the
equation

pr = Hp, (5)

where

hii hiz his
H=| hor hoo hos (6)
ha1 hsz has

Equation 5 projects the points of image p. onto image p,..

Rather than relating two whole images, the homography can also relate two particular points in the
images. Let x and y be pixel coordinates of point p; in image p. and 2’ and 3’ be the corresponding pixel
coordinates of point p} in image p,. The homography relates these two particular points:

x’ hii hiz his €
y | ~ | har ha2 hos Yy (7)
1 h31 hzz2 hssz 1

Note that Equation 7 shows similarity rather than equality. As explained in Section 2.1, all scalar multiples
of the point (z,y,1) define an equivalence class. The relationship in Equation 7 holds for points in p, of
the form (ka’,ky’, k) for any k. The similarity represents that the vectors pj and Hp; will have the same
direction, but may differ in magnitude. Based on the discussion in the previous section, specifically Equation
4, the homography H defines a projective transformation [14].

The homography can be computed using at least four points in the current image p. and their matching
points in reference image p,.. In order to compute the homography accurately, the selected feature points
must be matched between the two images carefully. Given the four matched feature points, we can solve the
matrix equation for the vector h:

(@1 oy 10 0 0 —way —ya) —a)] ZE

0 0 0 21 y1 1 —2yf —wmyi -0t B

2 y2 1 0 0 0 —moxh —yoxh —ab hm

0 0 0 = y2 1 —xouh —vy2uh -5 h21 -0 (8)
3 ys 1 0 0 0 —zszh —ysah —xf h22

0 0 0 =3 w3 1 —w3y3 —ysy3 —u5 h23

x4 ya 1 0 0 0 —zyx) —yuay -—a) h?’l
[000 0 wa w1 o—mayh vk b]| Y

and rearrange the elements of h to obtain matrix H, as in Equation 6. The homography H is also referred
to as the Direct Linear Transformation (DLT) that relates corresponding points in two images [14].

2.3 Reprojection Error

Once the homography, H, has been found, the accuracy of the projection of the current image p. onto
the reference image p, can be checked. This is achieved by comparing measured feature points in reference
image p, to the projected points in image p,., where p,. is the result of the matrix multiplication in Equation
5. An individual pixel in p, of the form (p,,,p,,) is obtained as in Equation 7. The error between points in
reference image p, and projected image p, is known as the reprojection error e,, and can be computed as
follows:

€r = \/(prz - ﬁrw)z + (pry - ﬁry)2 (9)

Minimizing the reprojection error indicates that the computed homography accurately projects the cur-
rent image onto the reference image, and therefore properly represents the relationship between the two
images. The success of the proposed visual homing scheme relies on correct homography estimation, as the
homography will be used to direct the UAV to its next waypoint, represented by a reference snapshot.

2.4 Homography Four-Point Parameterization

Equivalent parameterizations of the homography can relate images in the same way. In fact, the research
team of DeTone, Malisiewicz, and Rabinovich found that their deep convolutional network had more success
estimating one such parameterization—the four-point homography parameterization, Hypoins—than the ma-
trix homography in Equation 6, H, 4t [12]. Similar to the matrix homography, the four-point homography
parameterization requires four carefully matched points in the current image p. and the reference image p;..
However, whereas the matrix homography represents the translational and rotational components between
the two images, the four-point homography represents the relationship between the four pairs of matched
feature points. Considering points (z;,y;) from image p. and points (x},y!) from image p,, it is possible to
compute the directional offsets for each component of the points:

Au; = ul — u; (10)

Once the offsets Az; and Ay; have been calculated for each point, the four-point homography parameteri-
zation can be found:

Az Ay

| Az Ay
H4poznt - AJ}?, Ay3 (11)

A.T4 Ay4

There exists a one-to-one correspondence between Hypoin: and Hy,q4ri, that can be found using the Direct
Linear Transform (DLT) [14] or the getPerspectiveTransform() function in OpenCV [12]. While the
four-point homography is not used in this project for the purpose of neural network homography estimation,
the conversion from Huppint t0 Hypgerig is still a necessary step in the simulations. The methods used for
the purposes of this project are described in Section 3.3.

Future research in visual homing could use a convolutional neural network to estimate the four-point
homography, Hypoint, which would then be converted to the equivalent reparameterization, Hy,q¢riz. The
homography would then be used to navigate home. However, the research presented in this paper does not
rely on the four-point homography as this deep learning approach is outside of the scope of this project.
These methods are further discussed in Section 3.1 to encourage future research in this area.

2.5 Navigation using Homography

Once the four-point homography Huyp,eint has been estimated and converted to the matrix homography
H, .01z, the UAV will navigate towards the next waypoint using the relationship between the reference
snapshot and the current camera view. By visiting each snapshot waypoint, the UAV will eventually navigate
home.

Homography control law allows users to compute the vector in the direction that the UAV should travel
[16]. The control law is based on the computed homography and the center of gravity of the selected feature
points. The center of gravity of the feature points of current camera view is projected onto the reference
image using the computed homography. The control vector will point from the reprojected center of gravity
to the center of gravity of the feature points in the reference image. The control vector is a 3 x 1 vector
computed by:

,T —
ppHpe
];Tﬁ “Pr — Pe (12)
r Mr

<y

where

1 n
De = c; 13
p o ;:1 Pe; (13)

1 n
5= =S p, 14
Iz n;pl (14)

Equation 13 represents the center of gravity of the feature points in the current camera view and Equation
14 is the center of gravity of the reference feature points.

The control vector ¥ in Equation 12 will direct the UAV to align itself with the reference image. As it
reaches the reference image, it will visit the waypoint represented by that particular snapshot and switch to
homing in on the next snapshot waypoint. This series of local homing tasks will allow the UAV to navigate
home, even in long-range homing.

2.6 Visual Techniques for Path Optimization

The UAV’s exploratory journey may double over on itself or form a closed loop. While simply retracing
the exploratory journey will allow the UAV to navigate home, the path may be inefficient.

Previous research in visual navigation techniques has achieved some path optimization during repeated
journeys between the home and goal positions [11]. However, path optimization was not the focus of the
research. Research in path optimization focuses on numerical methods, which may be time consuming or
require previous knowledge of wide regions of the environment [4]. Visual approaches to path optimization
may offer advantages over other methods in terms of computation time and the amount of data required.

Feature extraction and feature matching for homography computation are achieved in OpenCV using
ORB feature detection and brute force matching. For each matched point, the brute force feature matching
computes an associated “distance,” which is a metric that represents how well the features in the two images
match. Lower distance values indicate strong matches, while higher values indicate poor matches. When
matching features between two images that share several well defined features, the matches will be associated
with low distance values, with 0.0 representing a perfect match. However, if given two images that share no
features, the brute force matcher will attempt to match similar features. The incorrect matches will result
in a high distance value.

The proposed visual approach to path optimization examines the distance associated with feature matches.
Before the return journey begins, the snapshots taken during the exploratory journey will be preprocessed.
Features will be extracted and matched between pairs of snapshots. If a pair of snapshots has well matched
features—the distance metric of the features lies below a certain threshold—it can be assumed that the
snapshots represent nearby positions in the path. Rather than retracing all of the steps between the two well
matched snapshots, the path optimization algorithm will indicate that the UAV can travel directly from one
to the other, eliminating the snapshots in between. This method guarantees that at least one snapshot will
be avoided on the return journey when optimization is possible.

Previous research has combined path optimization with visual navigation by using landmarks [4]. The
proposed approach to path optimization relies on landmarks—specifically the snapshots—that are close
enough together to allow for regular navigation updates from the UAV.

The visual path optimization technique explored in this research will achieve near-optimal return paths to
home by skipping over at least one snapshot waypoint. This scheme is not guaranteed to produce completely
optimal paths, as the UAV may have to retrace its exploratory journey at some point. However, this approach
is worth exploring because it requires no previous knowledge of the environment. The only data needed to
achieve near-optimal return paths will be gathered by the UAV during its exploratory journey.

3 Methods

This section describes methods for UAV navigation, visual techniques for path optimization, and the
simulation framework for testing. There will also be a brief discussion of methods that could be used to
train a convolutional neural network to estimate the homography between two images, though this is not
the focus of the approach to visual homing proposed in this project.

3.1 Convolutional Neural Network

As explained in the research of Lewis and Beard, homography computation involves feature extraction,
brute force feature matching, and the computation in Equation 8 [16]. DeTone, Malisiewicz, and Rabinovich
demonstrated that a neural network could compute the homography directly from two images [12].

While the concept of using a convolutional neural network for computing homography was explored, it
was not implemented in the navigation methods presented in this paper. Hardware and time limitations
prevented the effective implementation of a convolutional neural network. Future research would be more
successful with the availability of a GPU and a substantial amount of training data. The research of DeTone,
Malisiewicz, and Rabinovich indicated it took eight hours and 500,000 image pairs to adequately train a deep
neural network to estimate the homography between two images on an NVIDIA Titan X GPU [12].

Though the actual neural network was not implemented, a system was created for generated the training
data. A Python program was written to randomly crop out a 400 x 400 pixel image. All of these images
were cropped from a Google Earth image which was 5000 x 5000 pixels. The randomly cropped section
was then randomly distorted and warped. Features from the original cropped section and the distorted
version were compared and the homography between the two was calculated using OpenCV, an open source
computer vision library. In the Python program, the OpenCV findHomography () function was limited to
matching the strongest four points in each set of images. These pairs of images, the sets of points, and the
homography calculated between them would have been used to train the neural network to estimate the
four-point homography, as discussed in Section 2.4.

3.2 Snapshot Preprocessing for Path Optimization

During the randomly generated exploratory journey, the UAV took and stored snapshots of its path.
Before beginning the return journey to home, the system has the option of optimizing the return path based
on the stored snapshots using the methods described in Section 2.6. To determine whether optimization
was possible between two matches, the best eight feature matches were considered. If all eight features were
associated with a distance metric below a certain threshold—the simulation framework used a distance value
of 15—the algorithm would optimize the return path between these two snapshots.

The return journey was only optimized once. In cases where there were multiple opportunities for opti-
mization, the system would optimize once, but otherwise retrace the exploratory journey. This means that
the proposed visual techniques for path optimization produce near-optimal paths. The path optimization
algorithm prioritizes opportunities for optimization closest to the goal position of the UAV—which is the
current position at the time the algorithm is run. The algorithm also prioritizes the opportunity for optimiza-
tion that eliminates the most snapshot waypoints. The algorithm stops as soon as it finds an optimization
closest to the goal position of the exploratory journey. This means it may neglect to find longer opportunities
for optimization farther away from the goal position.

Once the path was optimized, the UAV could begin its return journey and navigate home, using the
methods described in the next section.

3.3 Navigation

The homography estimate is central to the methods through which the UAV navigates home. If im-
plemented and integrated into the system, the convolutional neural network would estimate the four-point
homography parameterization, Hypoint, which must be converted to the matrix homography, H,,¢ri. The
matrix homography is computed directly from the four pairs of feature points in the camera and refer-
ence images, as in Equation 8. This is also known as the Direct Linear Transform (DLT). As explained
by DeTone, Malisiewicz, and Rabinovich, the points used must maintain the relationship described by the
elements of the four-point homography [12]. To obtain the four point pairs from the four-point homography
parameterization, suppose the feature points in the reference snapshot image p, are oriented around an

origin:

((a/"‘/l’ y%) :(<17 1))
T5,Y5) = (—1,1
15
(2, 08) = (~1,-1) (19)
(xilvyil) = (1a *1)
The selection of these points defines the coordinate system.

With the feature points in the reference view selected, the four-point homography can be used to obtain
the feature points in the camera image p.:

(xl,yl) = (1 =+ A.Tl, 1+ Ayl)
(w2,2) = (=14 Az, 14+ Ays)
(z3,y3) = (=1 + Azz, —1 + Ays)
(T4,ya) = (1 + Ay, =1+ Ayy)

Using this method, pairs of feature points that preserve the relationship described in the four-point homog-
raphy can be found. These feature points were used to compute the matrix homography using Equation
8.

(16)

The four-point homography parameterization and the described conversion to the matrix homography
would be necessary if visual homing were to be tested with neural network homography estimation. Though
this research does not use a neural network, the four-point parameterization was still used. As will be
discussed in the next section, the simulation framework is coded in MATLAB and Simulink, with function
calls to Python and OpenC'V for the feature extraction and matching that could have been done by a neural
network. Simulations run in Simulink do not run in real time, making the simulation run time quite slow.
Calling Python functions from MATLAB and manipulating the Python outputs to be readable in MATLAB
further slowed down the system. The number of outputs needed from the Python code was minimized in an
attempt to reduce the simulation run time where possible. As a result, it was simpler to get the directional
offsets of the matched feature points in each image, rearrange the outputs into the four-point homography
parameterization, and then convert to the matrix homography.

Once the matrix homography was computed, the control vector was found using homography control
law, as expressed in Equation 12. The resulting vector ¥ points in the direction that the UAV should travel
to approach the reference snapshot. The length of the vector is not needed for the purpose of navigation, so
the control vector v was normalized.

3.4 Simulation Framework

The optimized visual homing approach was tested in simulations designed using MATLAB and Simulink.
A random exploratory journey consisting of a series of straight line paths was generated. These paths were
determined by the number of straight line segments comprising the path and the duration of the flight.

During the exploratory journey, snapshots were taken and stored for later navigation home. Snapshots
were taken at fixed intervals of time. The fixed altitude of the UAV affected the dimensions of the snapshot.
The altitude of the UAV was adjusted to get snapshots large enough to capture features that could be used
for homography computation, but small enough to offer a sparse representation of the path. The snapshots
were also taken so that they overlapped neighboring snapshots. This guaranteed that the position of the
UAV would always correspond to the region captured in a snapshot.

The Robotics Operating System (ROS) was used to communicate messages about the UAV’s direction
of travel. These messages were expressed as unit direction vectors. The ROS master was simulated through
the MATLAB Robotics System Toolbox.

Once the UAV reached the end of the predetermined exploratory journey, the UAV turned around by
reversing the previous direction vector. This computation indicated for the UAV to immediately turn around
and head in the direction from which it came. After the UAV turned around, it started using homography

10

control law to navigate home—as explained in Section 2.5 and Section 3.3—and switched between snapshots
when necessary.

Because snapshots taken during the exploratory journey were taken at fixed time intervals, the simulation
framework assumed that snapshots would be reached at the same time intervals during the return journey.
The time interval was altered when path optimization had occurred between two particular snapshots.

Simulink models do not run in real time. As a result, the simulations ran quite slowly. The system was
further slowed by calling functions in Python—which was necessary to work with OpenC'V image processing
tools—from MATLAB. Despite the slow run time of the simulations, the computation that allowed for
successful optimized visual homing occurred relatively quickly. For this reason, these approaches could be
implemented on a physical aircraft for real-time optimized visual homing.

3.5 System Specifications

Parameters used to represent aspects of the system had to be tuned to serve the particular purposes of
this project. Snapshots were taken every 30 seconds to provide sufficient overlap for navigation. On the
return journey, the system homed in to a different snapshot waypoint every 30 seconds.

Path optimization occurred when the best eight matched features between snapshots were all associated
with a “distance” value less than 15. When path optimization occurred between two snapshots, these
snapshots were generally closer together. As a result, the time the UAV had to home in on the optimized
snapshot was reduced to 15 seconds.

The camera view was updated every 5 seconds, meaning that the control vector had to be recomputed
and updated. This update time ensured that the camera view and snapshot were distinct enough to allow
for good homography computation and gave the UAV plenty of time to recompute the vector and adjust its
trajectory if it got off course.

The total flight time and sample time were adjusted to control the duration and length of the path along
with the number of samples during the exploratory journey. The simulated tests allowed for 3 minutes of
flight on the exploratory journey away from home with a sample time of At = 0.1 seconds. The return
journey was also allowed to run for 3 minutes, though the return simulation would terminate early when the
UAV successfully reached home.

It was assumed that the camera had a 65° view angle in each direction, as in the simulations of Lewis
and Beard [16]. The altitude of the UAV remained fixed at all points of the simulation, but was adjusted to
obtain snapshots large enough to contain a reasonable number of features. An altitude of 93.3 pixels created
snapshots that were 400 x 400 pixels, which proved to be a sufficient size for navigation purposes. The paths
could be completely represented by a total of seven snapshots.

3.6 Experiments

To test the visual homing and path optimization techniques, random exploratory journeys were generated
in three environments: a suburb, a desert, and a forest. Figure 1 shows the images of the environments.
Three paths were tested in five locations in each environment, for a total of 15 experiments per environment
and 45 total experiments.

Data from both the return journey and the optimized return journey were collected in order to test
both the visual homing techniques and the combination of this approach with path optimization. For each
experiment, the gathered data included: plots of the exploratory and return journeys, positions at which
snapshots were taken, positions at which the camera and snapshot views were updated, and the history of
the direction vectors and positions for the exploratory and return journeys. Position estimates were in pixel
coordinates relative to the starting position of the journey, which was assumed to be the origin.

11

(a) Suburban environment. (b) Desert environment. (c) Forest environment.

Figure 1: Environments tested.

4 Results

Data from the return and optimized return journeys was analyzed to determine the effectiveness of the
techniques for visual homing and path optimization.

The results of the experiments in the suburban, desert, and forest environments are displayed in Tables
1, 2, and 3, respectively. The overall results of all of the experiments are described in Table 4. These tables
show the percentage of tests that successfully reached the home position, the percentage of tests that were
also successful when the return path was optimized, and the average reduction in travel distance and time
when optimized.

Suburb Experiment Results
Successful Homing 87%
Successful Optimized Homing 85%
Average Distance Reduced 48%
Average Time Saved 84 seconds

Table 1: Results of experiments in suburban environment.

Desert Experiment Results
Successful Homing 100%
Successful Optimized Homing 67%
Average Distance Reduced 54%
Average Time Saved 95 seconds

Table 2: Results of experiments in desert environment.

Forest Experiment Results
Successful Homing 93%
Successful Optimized Homing 50%
Average Distance Reduced 59%
Average Time Saved 104 seconds

Table 3: Results of experiments in forest environment.

12

Overall Experiment Results
Successful Homing 93%
Successful Optimized Homing 67%
Average Distance Reduced 53%
Average Time Saved 93 seconds
Average Snapshots Optimized | 2.7 snapshots

Table 4: Results of all experiments.

The results of the experiments show that the optimized visual homing performed poorly in the desert and
forest environments. This behavior was to be expected because the visual homing and path optimization
techniques depend on feature extraction and matching. Both the desert and forest environments contain
uniform features across the map, making it more difficult to match features and detect opportunities for
path optimization. Similarly, when the UAV would get lost in the suburban environment, it was typically
when working with images of roads, driveways, or groups of trees, where there are few features to detect.

The path optimization techniques ensured that at least one snapshot waypoint would be eliminated
from each return path. On average, two to three snapshots were eliminated in the near-optimal return
path. In the optimal case, the goal position at the end of the exploratory journey was close enough to
the home position that the path optimization would eliminate all snapshots besides the first—the snapshot
representing the home location—and the last—the snapshot representing the goal location. An example of
successful navigation in the suburb, desert, and forest can be found in Figures 2, 3, and 4, respectively. In all
of these figures, the blue path represents the exploratory journey, the green circles represent the snapshots
taken during the exploratory journey, and the red path represents the return journey.

While the proposed near-optimal visual homing framework failed in some tests, the results of the sim-
ulations are promising. Fine-tuning the parameters of the simulations could improve feature extraction
and intelligent path optimization. The results of the experiments demonstrate the success of combining
visual navigation, sparse-snapshot representation, homography control law, and visual path optimization
techniques.

5 Future Work

There are several limitations of the techniques and simulations proposed in this project, which could
serve as areas for potential future work related to optimized visual homing strategies.

5.1 Neural Network Homography Estimation

Future work would include implementing the neural network strategy discussed previously in Section 3.1.
Combining neural network homography estimation and homography control law for visual navigation merits
research. It is anticipated that a GPU and a vast amount of training data will be required to successfully
implement the neural network.

Using a convolutional neural network for feature extraction, feature matching, and homography estima-
tion could result in a visual homing scheme that is more robust. The approach presented in this paper failed
when working with images with uniform features. Poor feature matches caused inaccurate computation
of the control vector, in which case the UAV would get lost and be unable to find home. A well trained
convolutional neural network could estimate the homography even in more challenging environments.

5.2 Snapshot Switching Logic

During navigation towards home, it is necessary to identify when a snapshot waypoint has been approx-
imately reached, so the system can switch to the next reference snapshot. The simulation framework used

13

(a) Exploratory journey. (b) Return journey. (¢) Optimized return journey.

Figure 2: Sample experiment run in suburban environment. In both the return journey and the optimized
return journey, the UAV successfully navigated home. The optimized return journey went directly from the
final snapshot—in this case, the snapshot closest to the bottom of the image—to home—mnear the center of
the image.

(a) Exploratory journey. (b) Return journey. (c¢) Optimized return journey.

Figure 3: Sample experiment run in desert environment. In both the return journey and the optimized
return journey, the UAV successfully navigated home. The near-optimal return journey moved from the
final snapshot—the snapshot near the center of the image—to the second snapshot. From there, the UAV
retraced its exploratory journey to the home position—the snapshot near the top of the image.

(a) Exploratory journey. (b) Return journey. (¢) Optimized return journey.

Figure 4: Sample experiment run in forest environment. In both the return journey and the optimized return
journey, the UAV successfully navigated home. The optimized return journey went directly from the goal
position—near the bottom right of the image—to the home position—mnear the left of the image.

14

in this research switches snapshots after fixed amounts of time. Even if the UAV did not reach a snapshot
waypoint in the allotted time, the system would switch to the next snapshot. The UAV would often be
unable to recover its course and would not find home.

An alternative snapshot switching scheme could improve simulation results and give the UAV a chance to
recover if it initially heads the wrong way. As explained by Lewis and Beard, the control vector in Equation
12 can be used as an estimate of the pixel offset between images [16]. As the UAV moves away from the area
represented in the snapshot, the control vector pointing from the reprojected center of gravity, Hp., to the
center of gravity of features in p,., p,-, will increase in length. The length of the control vector, therefore, can
be used as an estimate of the pixel offset between the two images. Once the pixel offset increases beyond
some predefined threshold, the system can switch to the next snapshot. The threshold value will depend on
the system.

The success of this approach depends on the snapshots overlapping. When considering how often a
snapshot should be taken, previous research has considered the catchment area corresponding to each snap-
shot [11] or the number of features shared between snapshots [16].

Though using time as a snapshot switching technique showed promising results, using the pixel offset for
snapshot switching could improve results and allow the UAV to recover if it is initially lost.

5.3 Path Optimization

The path optimization algorithm could be improved for more reliable visual homing results. Experiments
that show flaws in the path optimization algorithm are displayed in Figures 5, 6, and 7. Switching between
optimized snapshots sometimes caused the UAV to lose its course if it did not quite reach the snapshot
before the system switched. Furthermore, the threshold “distance” value used to evaluate opportunities for
optimization could be tuned for better optimization. More features could be examined and the number of
well matched features could be used to better prioritize opportunities for optimization. Taking advantage of
optimization between multiple snapshots could further improve the visual path optimization techniques.

5.4 Simulations and Implementation

The simulation framework used in this project did not consider realistic flight dynamics or characteristics
of a particular aircraft. More realistic simulations tested in a wider variety of environments could help refine
the techniques for optimized visual homing. After further simulations, implementation on a physical aircraft
could lead to more improvements in these techniques.

With further research and testing, the proposed techniques could prove to be an efficient and practical
solution to optimized visual homing for UAVs.

6 Conclusion

The results presented in this paper demonstrate that it is possible to navigate through an environment
without the use of a GPS. The simulations show that a UAV can potentially navigate along near-optimal
paths using a sparse representation of the environment. The simulated UAV was able to navigate home
almost all of the time before calculating an optimized path. However, the UAV did not experience a similar
success rate when navigating back to home along an optimized path. In the suburban environment, the
UAV was able to successfully navigate optimized paths most of the time. When the UAV failed to navigate
home and got lost, it was often in areas that had very similar features, such as wide streets and open fields.
Houses, cars, and sidewalks proved to be reliable features for navigation.

Throughout all environments, the UAV would get lost based on the features shared between snapshots.
When the overlap between snapshots did not contain distinct features, OpenCV would be forced to find
poor matches. Poorly matched features would cause inaccurate homography computation and throw the
UAV off course. Once a UAV was off course, it could rarely recover and would not be able to navigate back
to the home location. The desert and forest environments saw much less success in optimizing successfully

15

(a) Exploratory journey. (b) Return journey. (c¢) Optimized return journey.

Figure 5: Sample experiment run in suburban environment. This experiment demonstrates the opportunity
for path optimization in two separate sections of the path. The path optimization algorithm prioritizes the
longest opportunity for optimization closest to the final snapshot—mnear the center of the image. However,
after the path optimization, the UAV begins retracing its steps from the exploratory journey, when it could
optimize a second time and head straight to home—near the bottom of the image.

(a) Exploratory journey. (b) Return journey. (¢) Optimized return journey.

Figure 6: Sample experiment run in desert environment. This experiment demonstrates the opportunity for
path optimization in two separate sections of the path. Rather than retracing the exploratory journey after
cutting out one snapshot, the path optimization algorithm could be applied again for a more direct return
path to home—mnear the bottom of the image.

(a) Exploratory journey. (b) Return journey. (¢) Optimized return journey.

Figure 7: Sample experiment run in forest environment. This experiment is an example of when path
optimization would cause the UAV to get lost. During the optimized return journey, the UAV initially
got lost and went the wrong way when leaving the goal location—the snapshot near the bottom left of the
image. However, the UAV eventually recognized it was close to the home snapshot—near the center of the
image—and navigated home.

16

navigated paths; the UAV failed to navigate home along the optimized path one third to one half of the
time. The failure of the UAV to follow the optimized path in the desert and forest can be attributed to the
uniformity of the environment.

While the results of the navigation simulations are not exceptional, they do demonstrate that it is
possible to optimize the homing path of UAV, even with a sparse snapshot representation of the journey.
When optimized visual homing was achieved, it significantly reduced the the flight distance back to home.
The average reduction in the flight path of the UAV was 59%. The reduction in distance almost halved the
amount of flight time required to return to the home location. While the homing system developed in this
report was not the most reliable, it provided real benefits when strong feature matches were available. With
more research and time, these techniques will prove to be even more effective and reliable. The results of
this simulation demonstrate the potential of GPS-less optimized visual navigation for UAVs.

17

[1]

References Cited

Vitaly Ablavsky, Daniel Stouch, and Magnis Snorrason. Search path optimization for UAVs using
stochastic sampling with abstract pattern descriptors. In Proceedings of the AIAA Guidance Navigation
and Control Conference, 2003.

Abdulrahman Altahhan. Robot visual homing using conjugate gradient temporal difference learning,
radial basis features and a whole image measure. In Neural Networks (IJCNN), The 2010 International
Joint Conference on, pages 1-10. IEEE, 2010.

P Arena, S De Fiore, L Fortuna, L Nicolosi, L Patané, and G Vagliasindi. Visual homing: experimental
results on an autonomous robot. In Circuit Theory and Design, 2007. ECCTD 2007. 18th European
Conference on, pages 304-307. IEEE, 2007.

Luitpold Babel. Flight path planning for unmanned aerial vehicles with landmark-based visual naviga-
tion. Robotics and Autonomous Systems, 62(2):142-150, 2014.

G Bianco, R Cassinis, A Rizzi, N Adami, and P Mosna. A bee-inspired robot visual homing method. In
Advanced Mobile Robots, 1997. Proceedings., Second EUROMICRO workshop on, pages 141-146. IEEE,
1997.

José RG Braga, Haroldo FC Velho, Gianpaolo Conte, Patrick Doherty, and Elcio H Shiguemori. An
image matching system for autonomous UAV navigation based on neural network. In Control, Au-
tomation, Robotics and Vision (ICARCYV), 2016 14th International Conference on, pages 1-6. IEEE,
2016.

Zhang ChengHao, Chen JiaBin, Song ChunLei, and Xu JianHua. An UAV navigation aided with
computer vision. In Control and Decision Conference (2014 CCDC), The 26th Chinese, pages 5297—
5301. IEEE, 2014.

Gianpaolo Conte and Patrick Doherty. An integrated UAV navigation system based on aerial image
matching. In Aerospace Conference, 2008 IEEE, pages 1-10. IEEE, 2008.

Kodi CA Cumbo, Samantha Heck, Tan Tanimoto, Travis DeVault, Robert Heckendorn, and Terence
Soule. Bee-inspired landmark recognition in robotic navigation. In Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference Companion, pages 1039-1042. ACM, 2016.

Aymeric Denuelle and Mandyam V Srinivasan. Bio-inspired visual guidance: From insect homing to
UAS navigation. In Robotics and Biomimetics (ROBIO), 2015 IEEFE International Conference on, pages
326-332. IEEE, 2015.

Aymeric Denuelle and Mandyam V Srinivasan. A sparse snapshot-based navigation strategy for UAS
guidance in natural environments. In Robotics and Automation (ICRA), 2016 IEEE International
Conference on, pages 3455-3462. IEEE, 2016.

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Deep image homography estimation.
arXw preprint arXiw:1606.03798, 2016.

Verena V Hafner, Ferry Bachmann, Oswald Berthold, Michael Schulz, and Mathias Miiller. An au-
tonomous flying robot for testing bio-inspired navigation strategies. In Robotics (ISR), 2010 41st Inter-
national Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), pages 1-7. VDE,
2010.

Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge uni-
versity press, 2003.

18

[15]

[16]

[17]

[20]

[21]

[22]

[23]

Yu-Te Huang, Yao-Hua Ho, Hao-hua Chu, and Ling-Jyh Chen. Adaptive drone sensing with always
return-to-home guaranteed. In Proceedings of the 1st International Workshop on Ezxperiences with the
Design and Implementation of Smart Objects, pages 7-12. ACM, 2015.

Benjamin P Lewis and Randal W Beard. A framework for visual return-to-home capability in GPS-
denied environments. In Unmanned Aircraft Systems (ICUAS), 2016 International Conference on, pages
633-642. IEEE, 2016.

Chang Li and Xudong Wang. Jamming research of the UAV GPS/INS integrated navigation system
based on trajectory cheating. In Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), International Congress on, pages 1113-1117. IEEE, 2016.

Ming Liu, Cedric Pradalier, and Roland Siegwart. Visual homing from scale with an uncalibrated
omnidirectional camera. IEEE Transactions on Robotics, 29(6):1353-1365, 2013.

P Lukashevich, A Belotserkovsky, and A Nedzved. The new approach for reliable UAV navigation based
on onboard camera image processing. In Information and Digital Technologies (IDT), 2015 International
Conference on, pages 230-234. IEEE, 2015.

Ezio Malis and Manuel Vargas. Deeper understanding of the homography decomposition for vision-based
control. PhD thesis, INRIA, 2007.

Andrew Morgan, Zach Jones, and Richard Chapman. Computer vision see and avoid simulation using
OpenGL and OpenCV. 2016.

Victor Sineglazov and Vitaliy Ischenko. Intelligent system for visual navigation. In Methods and Systems
of Navigation and Motion Control (MSNMC), 2016 jth International Conference on, pages 7-11. IEEE,
2016.

Amedeo Rodi Vetrella and Giancarmine Fasano. Cooperative UAV navigation under nominal GPS
coverage and in GPS-challenging environments. In Research and Technologies for Society and Industry
Leveraging a better tomorrow (RTSI), 2016 IEEE 2nd International Forum on, pages 1-5. IEEE, 2016.

Kai Virtanen, Harri Ehtamo, Tuomas Raivio, and Raimo P Hamalainen. VIATO-visual interactive
aircraft trajectory optimization. IEFE Transactions on Systems, Man, and Cybernetics, Part C (Ap-
plications and Reviews), 29(3):409-421, 1999.

Anastasiia Volkova and Peter W Gibbens. Extended robust feature-based visual navigation system
for UAVs. In Digital Image Computing: Techniques and Applications (DICTA), 2016 International
Conference on, pages 1-7. IEEE, 2016.

Jane You, Edwige Pissaloux, and Harvey A Cohen. A hierarchical image matching scheme based on the
dynamic detection of interesting points. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95.,
1995 International Conference on, volume 4, pages 2467-2470. IEEE, 1995.

19

	Introduction
	Related Work
	Contributions
	Organization of the Paper

	Theoretical Background
	Projective Transformations
	Homography
	Reprojection Error
	Homography Four-Point Parameterization
	Navigation using Homography
	Visual Techniques for Path Optimization

	Methods
	Convolutional Neural Network
	Snapshot Preprocessing for Path Optimization
	Navigation
	Simulation Framework
	System Specifications
	Experiments

	Results
	Future Work
	Neural Network Homography Estimation
	Snapshot Switching Logic
	Path Optimization
	Simulations and Implementation

	Conclusion

