# Optimized Snapshot-based Visual Homing for UAVs

#### Auburn REU 2017 James Brown and Emily Sheetz



### **Outline**

- Problem
- Background
- Approach
- Results



# **The Problem**

- Issues with GPS
- Why Use Images for Homing?
- Benefits of Visual Homing



# **The Issues With GPS**

- GPS jamming
- GPS spoofing
- Loss of GPS signal



# Why Use Images for Homing?

- Cameras are lightweight and can multitask
- Sparse representation of environment
- More reliable than maps or GPS



# **Benefits of Visual Homing**

- Visual homing: return to starting location
- Practical applications
- Increases safety for users



# Background

- Literature review
- Theoretical background
- Motivation of approach

#### Jamming Research of the UAV GPS/INS Integrated Navigation System Based on Trajectory Cheating

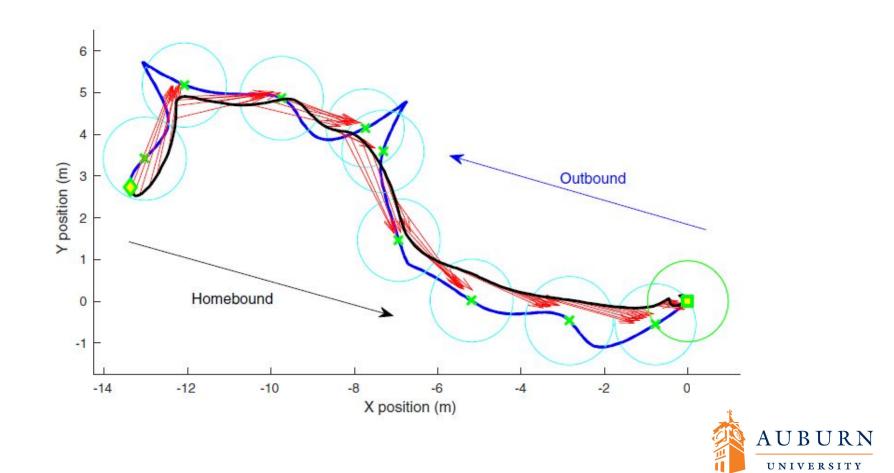
By: Chang Li and Xudong Wang

- Position cheating
- Loss of UAV control
- Velocity cheating



# **Biologically Inspired Visual Homing**

- Bio-inspired Visual Guidance: From Insect Homing to UAS Navigation
  - By: Aymeric Denuelle and Mandyam V. Srinivasan
  - Literature survey of techniques
- Bee-Inspired Landmark Recognition in Robotic Navigation
  - By: Kodi Cumbo, Samantha Heck, Ian Tanimoto, Travis DeVault, Robert Heckendorn, and Terence Soule
  - Ground robot learned to use landmarks to navigate to goal




#### A Sparse Snapshot-based Navigation Strategy for UAS Guidance in Natural Environments

By: Aymeric Denuelle and Mandyam V. Srinivasan

- Finding optimal amount of snapshots
- Navigation with minimal drift
- Path optimization





#### A Framework for Visual Return-to-Home Capability in GPS-denied Environments

By: Benjamin P. Lewis and Randal W. Beard

- Snapshot based homing
- Homography
- Navigation in different environments



## **Environment Examples**





• Relates two images using common features viewed from different angles

$$p_r = H p_c$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

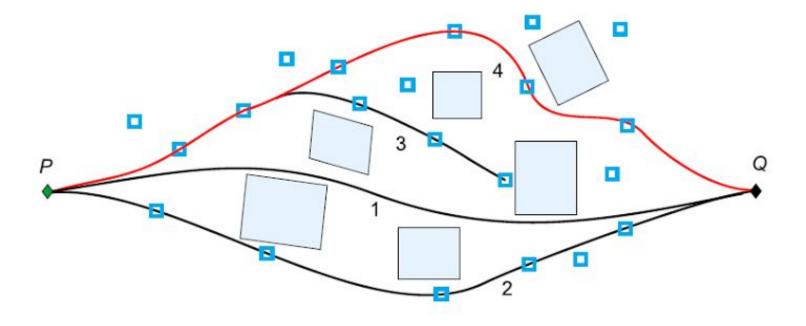


# **Homography Control Law**

- Compute direction vector to align UAV with reference image
- Based on center of gravity of feature points

$$\vec{v} = \frac{\bar{p}_r^T \boldsymbol{H} \bar{p}_c}{\bar{p}_r^T \bar{p}_c} \bar{p}_r - \bar{p}_c$$

$$\bar{p}_r = \frac{1}{n} \sum_{i=1}^n p_{r_i}$$
  $\bar{p}_c = \frac{1}{n} \sum_{i=1}^n p_{c_i}$ 




#### Flight Path Planning for Unmanned Aerial Vehicles with Landmark-Based Visual Navigation

By: Luitpold Babel

- Numerical method for path optimization
- Paths pass through sequence of landmarks
- Optimal path considers total distance and distance between landmarks









- Novel approach to visual homing
- Techniques
- Experiments



# **Our Approach**

- Combining techniques
- Snapshots to represent environment
- Option for path optimization based on features in snapshots
- Homography control law
- Series of local homing problems, visiting waypoints



### **Tools**

- MATLAB
  - Simulink
  - Robotics Operating System (ROS)
- Python
- OpenCV



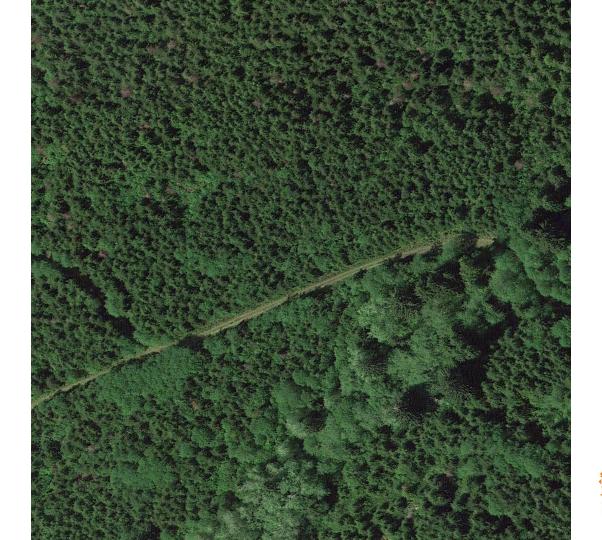
## **Simulation Framework**

- Random exploratory journey
- Snapshots taken and stored along the way
- On return, periodically computes homography estimation
- Homography control law directs UAV to snapshot
- Normalized direction vectors to navigate
- Option for path optimization



### **Experiments**

- Visual homing
- Path optimization with visual homing
- Three environments
  - Suburb
  - Desert
  - Forest
- 15 random paths tested across 5 different positions on map









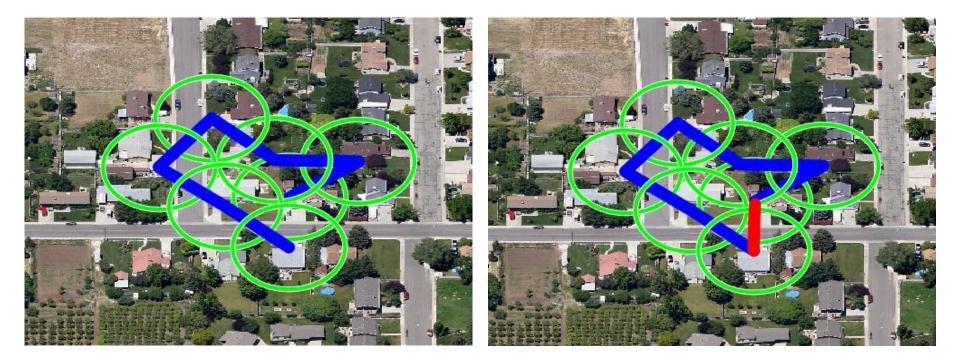




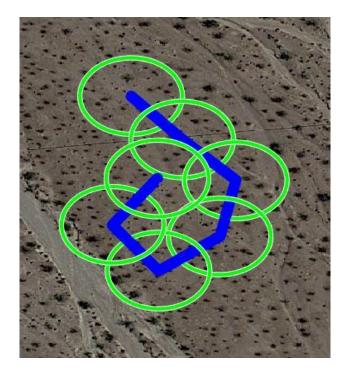


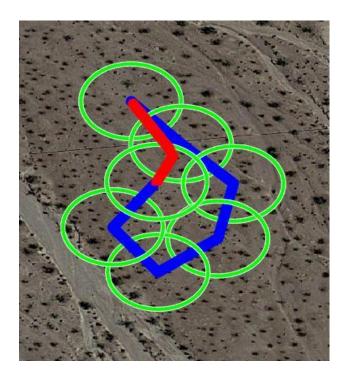



- Results of experiments
- Conclusions
- Future work

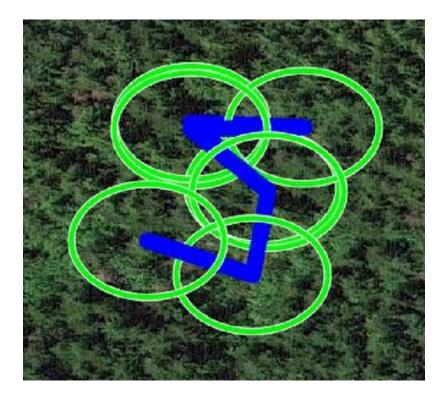


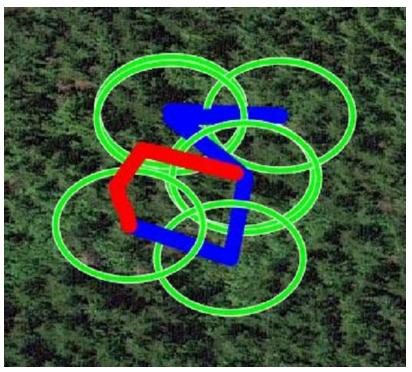

# **Data Analysis**


| Test    | Successful<br>Homing | Successful<br>Optimized<br>Homing | Average<br>Distance<br>Reduced | Average Time<br>Saved |
|---------|----------------------|-----------------------------------|--------------------------------|-----------------------|
| Suburb  | 87%                  | 85%                               | 48%                            | 84 seconds            |
| Desert  | 100%                 | 67%                               | 54%                            | 95 seconds            |
| Forest  | 93%                  | 50%                               | 59%                            | 104 seconds           |
| Overall | 93%                  | 67%                               | 53%                            | 93 seconds            |




# **Data Analysis**








# **Data Analysis**





### **Conclusions**

- Proof of concept
  - Sparse representation
  - Success in environments with uniform features
  - Path optimization using visual techniques
- Optimization is possible
  - Significantly reduced travel distance and time
  - More efficient visual homing



# **Future Work**

- Neural network for homography estimation
- More robust solution for regions with poor features
- More realistic simulations
- Implementation on physical drone
- Path optimization:
  - Switching between optimized snapshots
  - Fine tuning thresholds





- Problem
- Background
- Key Literature
  - Jamming Research of the UAV GPS
  - Sparse Snapshot-based Navigation
  - Homography control law
  - Optimizing UAV paths
- Approach
- Results
- Successful visual homing



# **Any Questions?**

