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Abstract—An important part of building an autonomous mo-
bile control system is creating a model that accurately reflects
the system’s behavior in order to predict and plan the future
state of the system. Several approaches to building a model
of an autonomous vehicle have been implemented and studied.
However, the trade-off between the accuracy and computation
time of a model makes it difficult for an autonomous system to use
accurate models in real-time to plan its trajectory. In the research
presented in this paper, we use system identification to develop
a model that accurately predicts the trajectory of the vehicle
while reducing the computation time of the model. This model
is built from experimental data collected from the Cognitive
Autonomous Test (CAT) Vehicle at the University of Arizona.
Our model is implemented on a hybrid predictive controller and
tested in simulations and real-world applications. The controller
uses the model to follow a planned trajectory and avoid obstacles
in the state space with reasonable computation time. While the
proposed model is specific to a particular autonomous vehicle,
our methods and models could be applied to other autonomous
systems.

I. INTRODUCTION

A. Background and Motivation

The technology of autonomous vehicles is rapidly growing
in quantity and quality. For autonomous systems to be safe
and predictable, the controller that manages the vehicle’s state
commonly uses sensor information along with a model of the
system. If a model accurately describes the behavior of an
autonomous system, it can aid the tasks of path-planning and
trajectory-following. Path-planning consists of dynamically
designing a valid trajectory to follow, as the vehicle learns
about its environment through sensor data, GPS information,
or camera technologies. Trajectory-following occurs along
small time-steps as the controller compares feedback error or
predictions from the model with the actual state of the vehicle
and corrects the vehicle’s state variables to more closely follow
the desired trajectory.

In the particular case of predictive controller, such as MPC
and DMC, the system requires accurate predictions from
the model to make decisions in real-time, so even in novel
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environments, the model must be computationally efficient.
If the model accurately describes the behavior of the car
but cannot be computed in a reasonable time, then it cannot
safely be used for the purposes of path-planning and trajectory-
following. The model must enable the system to make accurate
real-time decisions in order to avoid obstacles and maintain a
safe trajectory.

B. State of the Art

To achieve an acceptable control of an autonomous vehicle,
a model that generates accurate predictions in a reasonable
timeframe is required. There are several challenges present in
building such a model of an autonomous vehicle that have been
addressed in the literature on previous works with autonomous
systems.

One challenge is associated to measuring information about
the autonomous system and its environment. Using either cam-
eras, GPS measurements, or external sensors, the autonomous
system can learn about its environment and its current state
to choose a path that is safe and efficient. However, the
sampling rates of these sensors limit how often the system
can receive these data and respond accordingly. GPS is known
to have a low sampling rate [19], which means that the
autonomous system may not have enough information between
data samples to stay on its path or avoid obstacles. One way
to get around this is to integrate GPS with other sampling
methods, such as laser sensors [5] [12] [14]. Although these
sensors can be more efficient, they are expensive and subject to
interference from other laser sensors, and therefore not a good
universal option for autonomous vehicles [4] [9]. On the other
hand, cameras have a high sampling-rate but are ineffective
in night-time, foggy, or bright environmental conditions [4].
Computer vision can be used to achieve strong results in poor
conditions, but most of these algorithms offer more unique
approaches than their daytime counterparts, so they are often
complex [6] [9].

The next challenge of modeling to be addressed is the type
of model to use. The model should be sophisticated enough to
provide useful information about the system to the controller,
but simple enough that it does not create a large computational
burden. Linear models come with low computation time, but
are rare in real-world applications [17]. However, nonlinear
models that more accurately fit real-world processes come with
significantly greater computation time. Kinematic models are
easier to design and implement because they give a coarse
understanding of the system, and as a result can be computed
quickly. Dynamic models take significantly longer to compute,



but provide more detailed and accurate information about the
state of the autonomous vehicle. Hybrid models incorporate
the strengths of both kinematic and dynamic models while
compensating for their weaknesses [18]. Hybrid models switch
between discrete-state and continuous-state models depending
on how much information is required to maintain safe oper-
ation of the autonomous vehicle. Switching logic determines
the conditions under which each model should be used.

Another challenge in building a model of an autonomous
vehicle exists in choosing and evaluating the parameters to be
used in the model. Parameters can be assigned values based on
the properties of the car [15] [16] [18] or based on parame-
ter estimation [1] [7]. The former approach risks assigning
inaccurate values to the parameters, which may affect the
reliability of the model. For example, some parameter values
may vary based on environmental factors such as temperature
or tire pressure. Thus, assigning values to these parameters will
be less accurate than estimating the values of the parameters
based on some objective function.

Overall performance of the autonomous system behavior
is defined by its control strategy. Several approaches can be
considered here. Batch controllers do not utilize mathemat-
ical models; in the case of an autonomous vehicle, a batch
controller may break driving down into motion primitives and
control the vehicle through combinations of motion primitives
[10]. Proportional Integral Derivative (PID) controllers are
often too simple for nonlinear systems. However, if utilized
with another controller, PID controllers can manage low-level
control tasks while the other controller manages higher-level
tasks [12]. Model predictive control (MPC) is widely used
because closed-loop predictive controllers can utilize feed-
back to effectively handle system constraints and disturbances
[2] [11]. However, nonlinear models implemented in model
predictive controllers often come with heavy computational
burden. Hybrid controllers model continuous state processes
with models that are computed in discrete time [3] [18].
Artificial intelligence (AI) based path-planning can plan and
follow trajectories accurately and safely even in unfamiliar
environments with stationary and moving obstacles [8]. How-
ever, these controllers are complex and computationally time
consuming. Artificial neural network approaches are just as
effective in path-planning and trajectory-following, but require
exhaustive understanding of the environment and possible
scenarios the network could encounter [12]. Furthermore,
neural network approaches utilize fuzzy logic, which may be
too imprecise in situations when safety is a priority.

C. Contributions

In this paper, we use system identification to develop
a model that accurately represents the current state of the
CAT Vehicle and predicts the future states of the system
under a range of typical driving conditions. In particular, our
contributions include:

• Propose an experimental model that outperforms pre-
dictions obtained using kinematic and dynamic models
for the CAT Vehicle behavior. Our model also provides

Fig. 1. Example of the straight line GPS sensor characterization experiments.
Parking lanes were used as references for the car’s true position.

reduced computation time associated with the model
prediction, suitable to be used on model-based optimal
controllers.

• Redefined switching logic based on experimental analysis
improves computational time and state predictions.

D. Organization of the Paper

This paper is organized as follows. Section II presents
experimental design for data collection, methods for data
processing, and development of the model. Simulated tests
and real-world test results are presented in Section ??.

II. METHODS

System identification is the process of using experimental
data to characterize a system’s behavior [13]. We use system
identification methods to develop our model of the CAT
Vehicle by designing experiments, gathering and analyzing
data, finding and validating the model.

Because our experiments were designed to be representative
of typical driving tasks, the model developed from the data is
accurate within the tested ranges of velocity, steering angle,
and acceleration.

A. GPS Characterization

The GPS sensor on the CAT Vehicle–a NovAtel IMU-
CPT Global Navigation Satellite System (GNSS)–takes noisy
measurements and, according to the manufacturer, has an
accuracy of 1.2 meters. The raw GPS data are not precise
enough for the development of an accurate model for the
vehicle and need to be improved.

Several approaches to improving GPS accuracy were con-
sidered. Computer vision utilizes cameras to determine the
approximate true position of the vehicle, which can be used
to verify the location of the vehicle according to the GPS
measures. Similarly, readings from multiple other sensors,
such as lasers, in addition to GPS could verify the position of
the vehicle. While the use of cameras or lasers could improve
the accuracy of GPS measurements by verifying the position
of the vehicle, these other sensors have error as well. This
means that the true position of the vehicle determined by the
other sensors is actually inaccurate.

We designed a set of experiments that provide data to com-
pare measures from the GPS sensor to the car’s true position,



estimated obtained through computer vision. The purpose of
these experiments is to characterize the inherent error of the
GPS sensor, develop a function or filter to eliminate noise and
improve accuracy of the measures, and ultimately obtain more
accurate position information, to be used for the development
of the model for the vehicle.

The experiments to characterize GPS error included driving
along a straight line and making right and left turns in a
parking lot. These experiments were designed to represent
some typical driving conditions, but were ultimately limited
by the size of the testing area. Straight lines were tested at
2.5 and 5 meters per second, while right and left turns were
tested at 2.5 meters per second.

The lanes in the parking lot were used as way-points–
stationary points with known position, estimated by multiple
GPS tools–to measure when the vehicle reached a certain
point, as seen in Figure 1. The true position of the vehicle
was determined using information from videos recorded by a
Logitech HD Pro C290 Webcam at a frame rate of 30 frames
per second. Computer vision tools were used to see when the
vehicle crossed the way-points along its path (See Fig. 1).
The GPS sensor measurements were compared to the known
position of the vehicle according to the video to measure the
error in the GPS sensor.

Once we had finished gathering data from our experiments,
we examined the frequency of the signal from the GPS using
spectral analysis. We developed a lowpass filter to remove
high frequency changes in the GPS measures and to smooth
the GPS data. The smoothed data could then be compared to
the true position of the vehicle.

The developed filter was used to correct the GPS measures
offline after experiments for model development were run.

B. Experiment Design for Model Development

To develop our model, we designed experiments to test
how the CAT Vehicle operates under ranges of typical driving
conditions. The vehicle collects data on velocity, steering
angle, acceleration, and brakes every 0.02 seconds. The No-
vAtel IMU-CPT GNSS collects position information every
0.01 seconds. The sampling rate of the vehicle–0.02 seconds–
determined the sampling rate for our experiments.

The experiments test dynamical behavior on typical driving
ranges. Velocity was tested from 2.5 to 10 meters per second.
Steering angle is recorded by the car as a percent from -100
to 100. Accelerator and brakes are recorded as a percent from
0 to 100. These percentages will later be converted to real
values after experiments are conducted.

Experiments were put into categories: straight paths, turns,
and circles. For the straight path experiments, we commanded
a velocity (corresponding to the range above, tested in incre-
ments of 2.5 meters per second) to the car and allowed the
car to move in a straight path for approximately 1 minute or
3000 data samples. On a few of the experiments, we manually
accelerated and decelerated once the vehicle reached a pre-
determined velocity. For turn experiments, we maintained an
approximately constant velocity and steering angle of the car,

collecting data for 1 minute as before. For circle experiments,
we drove the vehicle in as tight a circle as possible, testing
both negative (left) and positive (right) angles.

Each test was run ten times. Repetition of the experi-
ments provides sufficient data to characterize random error
in the measures collected from the vehicle, the GPS, and
the controller that manages velocity once given a commanded
velocity.

A longer test designed to last 5 minutes, containing about
150,000 data samples was obtained to perform cross validation
on the model.

C. Pre-processing the Data

After collecting the data from the experiments, a number
of steps to preprocess the data are necessary. We first needed
to make sure measurements for each variable were taken at
the same timestamps. Since the sensors take measurements
independently, the measurements we collected were taken at
different timestamps. Furthermore, the samples were not taken
at uniform time intervals, and test space often limited the
number of samples that could be taken during an experiment.
Interpolating the data gathered so that each experiment con-
tained 3000 uniformly spaced samples resolved these issues.
We created a time vector based on the difference between
the start (ts) and end times (te) of each experiments and the
number of samples desired for each experiment (in this case
a constant 3000).

t(k) = (k − 1) · ((te − ts)/3000) + ts (1)

This time vector was used to interpolate the results collected
from the experiment. Mean errors produced by interpolating
were all in the range of 0 to 0.05.

After interpolating the data, each signal measurement is
filtered using a 20th order FIR low pass filter and smoothed
using a moving average filter with a span of 10 elements.

The next step in processing the data is converting the
steering percentages into real values. For steering information
we consider steering of the wheels can be estimated using
Ackerman’s steering model and a linear relationship between
the steering percentage and angle. As specified by the manu-
facturer, the minimum radius of curvature of the car is 5.58
meters. We assume this is equivalent to a steering percentage
of 100. The maximum steering percentage is equivalent to
a steering angle of 35.5 degrees. We convert the measured
steering percentage into a steering angle of an imaginary center
tire by the equation δ = 35.5/100 · pm, where pm is the
measured steering angle percent and δ is the measured angle
of an imaginary center tire. This is converted into a radius
of curvature using the following equation specified by the
vehicle’s manual:

rm =
tan

δ

1 + 0.0015v2

L
(2)



Fig. 2. Calculation of delay and settling time. The red dots show when the
car starts moving (dot 1) and when the car reaches an equilibrium point (dot
2).

where v is the velocity and L is the wheel base of the car.
Then, the measured radius of curvature is converted to steering
angles using the Ackerman steering model:

δi = arctan
L

rm − T

2

(3)

δi = arctan
L

rm +
T

2

(4)

where T is the tread, and δi and δo are the inner and outer
wheel steering angles respectively.

After pre-processing the data, the data were organized into
matrices. An example matrix is shown in Table II-C.

vel input vel accel δ steer brake lat long
0.07 0 0 -3.356 0 32.3 -110.9
...

...
...

...
...

...
...

After creating the matrices, the delay and settling time of the
internal controller for the velocity were measured. The mean
settling time of the experiments was 30.11 seconds and the
mean delay of the system was 0.7387 seconds, as computed
using the graph in Fig. II-C.

D. Model Development

Model development was separated into characterization of
internal controller dynamics and dynamical car model devel-
opment.

1) Internal controller dynamics: Given that the autonomous
vehicle considered in this study runs XXX ADD SOFTWARE
VERSION HERE, an internal controller is provided by the
manufacturer for which no characterization was available. This
controller generates additional dynamics to the CAT Vehicle
response. In order to characterize the behavior of this internal
controller two sets of data were considered: velocity profile
and wrench control. Experimental setting consisted of 25
experiments where a velocity command was input into the

Fig. 3. Internal Controller Dynamics model shown on the validation set (half
of the experiments run)

car and the actual velocity.Experimental data was fitted to a
continuous time transfer function model of order 3, with a
0.42 second delay1.

h1(s) = e−0.42s 0.03679s2 − 0.1981s+ 0.7647

s2 + 1.629s+ 0.7522
(5)

Identification results are presented below.

Data Fit Percent
Test Set 78.53
Training Set 74.53

Figure 3 presents representative cross validation error with
respect to the best fit model, selected base on model simplicity
and prediction error.

2) Car Dynamics model: . For the development of this
model, we used the MATLAB System Identification toolbox
to test how different models would fit our data. We began by
estimating the relevance of parameters measured by the CAT
Vehicle and parameters computed after experiments were run.
Computed parameters included the steering angle measured in
radians, the cosine, sine, and tangent of the steering angle, and
the position of the vehicle in meters. Correlation analysis and
least squares estimation equation [13] were used to define a
identification matrix from the original 17 measured variables
considered as

Θ̂ = (MT
i Mi)

−1MT
i Y (6)

Where Mi initial measurement matrix, Θ estimated parameters
vector and Y system output vector. In particular here, we
selected as the system output Y (t) = dx

dt to predict the
vehicle velocity with respect to the x axis and the measurement
matrix consisted of a subset of the measures in Mi defined
as M = [vm(t)x(t)y(t)φ(t)]. Since this model considers 4

1This delay is associated to car dynamics as well as internal controller that
operates in the system when velocity profiles are set as reference



measures, the system can be described in terms of a Multi
input multi output (MIMO) transfer function matrix

Y (s) =
[
h1(s) h2(s) h3(s) h4(s)

] 
vm
x
y
φ

 (7)

where the associated input output transfer functions estimated
are

h1(s) =
−4.122s2 + 49.61s− 4.098

s2 + 6.211s+ 26.79

h2(s) =
20.55s2 − 110.4s+ 12.08

s2 + 37.03s+ 111.7

h3(s) =
−0.06946s2 − 0.06244s+ 0.0002256

s2 + 1.416s+ 0.5473

h3(s) =
−22.3s2 + 371.5s− 26.08

s2 + 6.59s+ 18.78

Model presented in 7 had an associated fit percentage of
85.67%

E. Validation

1) Internal Controller Validation: After building the model
and validating the model on a test set, we compare our model
with the model currently implemented in the car. The current
model switches between a kinematic model and a dynamic
model depending on the state of the vehicle. The kinematic
model is given by equation 6 and has inputs u = [v, δ] with
z = [x, y, θ]. L is a parameter denoting the wheel base of the
vehicle.

ẋ =

 v sin θ
v cos θ
v tan δ

L

 (8)

The commanded velocity and steering angles as measured
in the experiments are used to determine the outputs of the
kinematic model. We take the derivative of the position vectors
using the Pythagorean Theorem to get the velocity from the
model. This velocity is compared with the velocity we obtain
using the transfer function computed above and an error is
calculated (see results in figures 4 and 5). We display the
results below for comparison between the new model and the
kinematic model for one experiment:

Model Type Mean Square Error
Kinematic Model 1.0972
Transfer Function 0.7430

Therefore, our model improved upon the accuracy given by
the existing kinematic model.

Fig. 4. A plot of the measured velocity with the velocity as computed from
the kinematic model and the transfer function model of the internal controller
of the car

Fig. 5. A plot of the absolute value of the error between the measured velocity
and both the velocity computed from the kinematic model and the velocity
computed from the transfer function model

2) Car Dynamics Model Validation: We also compare the
outputs of the new car dynamics model with the results from
the current model in the car. We use the results from one
experiment to obtain a position derivative in the x direction.
The steering angle in radians is computed and is inputted
alongside the commanded velocity into the kinematic model.
This vector is compared with the output from the new model
to obtain the following results in one experiment:

Model Type Mean Square Error
Kinematic Model 79.8702
Transfer Function 13.1558

Much of the error in the transfer function was due to
noisy signals at the beginning (as can be seen in figure 6).
Overall, the new model is more accurate than the previously



Fig. 6. A plot of the measured x position derivative, the x position derivative
as computed by the kinematic model, and the x position derivative as
computed by the transfer function model developed above

Fig. 7. A plot of the absolute value of the error between the measured dx
and the dx computed from the kinematic model and the new transfer function
model developed in the previous section

implemented kinematic model (errors can be seen in figure 7).

III. CONCLUSIONS AND FUTURE WORKS

The transfer function used to represent the system is more
accurate and more computationally efficient than the previous
kinematic model. Further research in the development of the
mathematical model could involved further characterization
of the error inherent in the CAT Vehicle’s sensors, which
would improve the accuracy of the model. Another potential
area for future work could involve more exhaustive system
identification of the vehicle, in which the experimental data
gathered would test a wider range of typical driving conditions.
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