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Abstract— Model Predictive Control (MPC) is an estab-
lished control technique in chemical process control, due to
its capability of optimally controlling multivariable systems
with constraints on plant and actuators. In recent years,
the advances in MPC algorithms and design processes, the
increased computational power of electronic control units,
and the need for improved performance, safety and reduced
emissions, have drawn considerable interest in MPC from the
automotive industry. In this paper we survey the investigations
of MPC in the automotive industry with particular focus on
the developments at Ford Motor Company. First, we describe
the basic MPC techniques used in the automotive industry,
and the early exploratory investigations. Then we present
three applications that have been recently prototyped in fully
functional production-like vehicles, highlighting the features
that make MPC a good candidate strategy for each case. We
finally present our perspectives on the next challenges and
future applications of MPC in the automotive industry.

I. INTRODUCTION

The operation of automotive systems must be optimal

throughout the entire operating range to address tightening

fuel economy, emissions and safety requirements. As a

consequence, applications in the automotive industry are

constantly providing new opportunities for the use of control

techniques that are capable of optimizing the system response

while non-conservatively enforcing specification constraints.

Model Predictive Control [1] has been developed specif-

ically for these purposes, in the domain of chemical and

process control [2]. Typical process control problems are

characterized by relatively long sampling periods (often

measured in minutes and hours) and ample processing and

memory resources. On the other hand, automotive control

problems are facing severe and diametrically opposite con-

straints, where typical sampling periods are few milliseconds

and on-board computing power is limited for packaging, cost

and mobility reasons. However, in recent years the increase

in processor speed and memory, and the development of

new algorithms has enabled the application of MPC for

automotive control problems. For such applications, MPC

has several attractive features. First, MPC allows the design

of multivariable feedback controllers with similar procedural

complexity as of single variable ones. In addition, MPC

allows for the specification in the design phase of constraints
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on system inputs, states, and outputs, which are then en-

forced by the controller. Furthermore, MPC allows for the

specification of an objective function which is optimized

by the controller. Other advantageous MPC features are

the capability of dealing with time delays [3], of rejecting

measured and unmeasured disturbances [4], and of taking

advantage from future information [5]. Finally, there is

philosophical attractiveness to MPC since it embodies both

(receding horizon) optimization and feedback adjustment,

thus mimicking many processes in nature that seem to

inherently operate in this way.

MPC has been investigated in several automotive control

applications, including engine [3], [6]–[9], transmission [10],

[11], emissions [12], [13], mechatronics actuators [14],

steering [5], [15], suspensions [16]–[18], energy manage-

ment [19], [20], thermal management [21]. Several compa-

nies have contributed and supported MPC research, including

Ford, BMW, Honda, Honeywell, PSA, Toyota. At Ford

Motor Company, control technologies based on MPC have

been explored since the early 1990s inspired by the landmark

survey by Professor Morari and his coworkers [1]. Some of

the results from these early efforts were later published in [6]

in the context of Idle Speed Control, where the advantages

of MPC – such as the ability to handle actuator constraints

and load preview – were demonstrated. In the following

years several other exploratory investigations were developed

including traction control [22], semi-active suspensions [18],

and Direct Injection Stratified Charge (DISC) engine [7].

While these investigations were mostly limited to simulation

studies, significant insight was obtained in benchmarking

MPC capabilities within the automotive environment, and

in some cases this even led to analytical breakthroughs,

such as providing an explicit solution for optimal semi-active

suspension regulation [18]. During the last decade, a num-

ber of MPC applications were developed in fully drivable

prototype vehicles at Ford, with controller specifications in

some cases very similar to the ones in production vehicles.

Examples include traction control [22], autonomous vehicle

and stability control [4], [5], [23], idle speed control [3], [24],

and series HEV energy management [25]. While these MPC

controllers still required significant computational resources,

the combined use of multiparametric programming [26], and

appropriate design steps [3], [27] resulted in computational

load within the reach of automotive microcontrollers.

In this paper we survey the progress in developing MPC

controllers in automotive applications focusing primarily on

the work done at Ford Motor Company. We first review

the core of the MPC technology that was used in the
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MPC applications development (Section II), then we discuss

the early exploratory investigations (Section III), mostly

simulation-based, developed at Ford. In Section IV we survey

three recent Ford applications of MPC, and we discuss the

key features that make MPC appealing for each. Finally, in

Section V we briefly discuss our perspective on the future

challenges for MPC applications to automotive systems.

II. MODEL PREDICTIVE CONTROL

Model predictive control [1] has been developed to inte-

grate the performance of optimal control with the robustness

of feedback control. Similar to optimal control, MPC selects

the actions by optimizing a cost function while accounting

for system dynamics and constraints. The general MPC

optimal control problem is

min
U(t)

F (x(N |t)) +

N−1
∑

k=0

L(x(k|t), y(k|t), u(k|t)) (1a)

s.t. x(k + 1|t) = f(x(k|t), u(k|t)), (1b)

y(k|t) = h(x(k|t), u(k|t)), (1c)

xmin ≤ x(k|t) ≤ xmax, k = 1, . . . , Nc, (1d)

ymin ≤ y(k|t) ≤ ymax, k = 0, . . . , Nc, (1e)

umin ≤ u(k|t) ≤ umax, k = 0, . . . , Ncu, (1f)

x(0|t) = x(t), (1g)

u(k|t) = κ(x(k|t)), k = Nu, . . . , N − 1,(1h)

where t is the discrete time index and for a vector v, the

notation v(h|t) denotes the value of v predicted h steps ahead

from t, based on information up to t. Equations (1b), (1c)

are the discrete time model of the system dynamics with

sampling period Ts, where x ∈ R
n, u ∈ R

m, y ∈ R
p

are the system state, input, and output, respectively. The

model is initialized at the current state estimate x(t) by (1g).

The optimizer in (1) is the control input sequence U(t) =
(u(0|t), . . . , u(N − 1|t)), where N is the horizon. The cost

function (1a) represents the performance objective, and it is

composed of a stage cost L, and a terminal cost F . The

constraints on states and outputs, and inputs are enforced

along the horizons Nc and Ncu, respectively. The control

horizon Nu is the number of optimized steps, before terminal

control law (1h) is applied.

Based on optimal control problem (1), at any control cycle

t the MPC control strategy operates as follows: (i), the cur-

rent state estimate x(t) is acquired and used to initialize (1)

by (1g). (ii), problem (1) is solved thus obtaining an optimal

input sequence U∗(t). (iii), the first element of the optimal

input sequence is applied to the system input, u(t) = u∗(0|t).
At the following cycle the process is repeated using the newly

acquired state estimate, thus implementing feedback.

A. Common assumptions on dynamics and cost function

While the MPC strategy based on (1) is fairly general,

some restrictions have to be imposed in order to obtain an

optimization problem that can be solved in practice.

The cost function (1a) is formulated in terms of the

weighted norm of the states, inputs, and outputs

‖x(N |t)‖p
P +

N−1
∑

k=0

‖x(k|t)‖p
Q+‖u(k|t)‖p

R+‖y(N |t)‖p
S , (2)

where Q, R, S, P are weight matrices, p = 1, 2,∞. For

p = 1,∞, ‖v‖p
Q is the p-norm of Qv, and, with a little

abuse of notation, for p = 2, ‖v‖p
Q = v′Qv, Q ≥ 0. For

p = 1,∞, (2) is formulated by linear equations and linear

constraints, while for p = 2 by a convex quadratic equation.

Linear Time Invariant (LTI) dynamics are normally used

for the prediction model, so that (1b), (1c) results in

x(k + 1|t) = Ax(k|t) + Bu(k|t), (3a)

y(k|t) = Cx(k|t) + Du(k|t). (3b)

The outputs in (1) and (3) can formulate cost function terms

and constraints on multiple states and/or inputs.

Using (2) and (3), problem (1) results in [26], [28]

min
(U(t),ε(t))

U ′(t)QU(t) + x(t)C′U(t) + Fε(t), (4a)

s.t. GU(t) ≤ W + Sx(t), (4b)

GeU(t) + T ε(t) ≤ We + Sex(t), (4c)

where ε(t) ∈ R
ne is a vector of auxiliary variables used when

p = 1,∞, while ne = 0 for p = 2. Setting p = 1,∞ in (2),

results in Q = 0, C = 0, hence in a Linear Program (LP).

For p = 2, (4) is a Quadratic Program (QP). Algorithms with

guaranteed convergence for solving LP and QP exist.

More recently [26], it was shown that the solution of (4)

as a function of x(t) can be computed by parametric pro-

gramming, thus synthesizing the MPC state feedback law

u(t) = Fi(t)x(t) + Gi(t), (5a)

i(t) : Hi(t)x(t) ≤ Ki(t), (5b)

i(t) ∈ {1, . . . , s}.

The state space is partitioned by (5b) into s polyhedral

regions (indexed by i), and (5a) assigns to each region

an affine control law. Indeed, real time optimization is not

needed since, the MPC control law is evaluated by: 1)
finding the region i(t) = ı̄ such that all the inequalities

constraints (5b) are satisfied, and 2) evaluating the gain (5a)

for i(t) = ı̄ and use the result as input. Using (5), the closed-

loop dynamics is computed, and stability and other properties

can be analyzed [24].

B. Hybrid, switched, and time varying models

Several extensions to the assumptions in Section II-A have

enlarged the applicability of MPC. LTI dynamics (3) can be

substituted by the piecewise affine dynamics

x(k + 1|t) = Ai(k|t)x(k|t) + Bi(k|t)u(k|t) + φi(k|t), (6a)

y(k|t) = Ci(k|t)x(k|t) + Di(k|t)u(k|t) + ζi(k|t), (6b)

i(k|t) : Hx
i(k|t), x(k|t) + Hu

i(k|t)u(k|t) ≤ Kx
i(k|t),(6c)

i(t) ∈ {1, . . . , s},
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where (6c) partitions the state-input space into polyhedral

regions, and (6a), (6b) assign to each region a state update

and output equation, respectively. PWA systems [29] rep-

resent a powerful formalism which has been shown to be

equivalent, under mild assumptions, to several other classes

of systems [30]. By leveraging such equivalencies, the MPC

problem (1) where (1b), (1c) are formulated as (6), and (1a)

as (2) for p = 1,∞ (p = 2) results in a Mixed Integer

Linear (Quadratic) Program, MILP (MIQP) [31]. The explicit

feedback law calculation is still possible for MILP, while

only a semi-explicit calculation is possible for MIQP [32].

However, in both cases the complexity of the feedback

law (5) tends to be large [15].

The switched MPC strategy mitigates this problem. In

switched MPC, the piecewise region index is updated only

at the initial step of the prediction horizon. For partitions

that do not depend on the current input, s PWA control laws

(one per region) are computed and merged, as opposed to

sN for (6), resulting in a much simpler control law (5).

A further extension is to use as prediction model the linear

time varying (LTV) dynamics

x(k + 1|t) = A(t)x(k|t) + B(t)u(k|t) + φ(t), (7a)

y(k|t) = C(t)x(k|t) + D(t)u(k|t) + ζ(t), (7b)

where the system matrices can change at any control cycle.

Model (7) is obtained for instance when the nonlinear

dynamics (1b), (1c) are linearized [5], [33] around the current

state estimate, x(t). While indeed powerful, the LTV sys-

tem (7) changes the parameters of the optimization problem

at every cycle. Hence, (4) is continuously reconstructed, and

the calculation of feedback law in the form (5) is, in general,

not possible.

III. EARLY EXPLORATORY INVESTIGATIONS

In this section we briefly summarize some of the early

MPC applications in the automotive area, primarily devel-

oped by Ford researchers and their academic partners, aimed

at assessing the potential benefits of MPC for automotive

applications.

A. Powertrain Control

Idle Speed Control (ISC) is one of the most basic and

representative automotive control problems [34], and still

one of the most important aspects of engine operation since

typical vehicles spend a significant amount of time and fuel

at idle [6]. The main objective of ISC is to keep the engine

speed under tight and robust control with target speed as

low as possible, for fuel economy, while preventing engine

stalls. The capability of MPC for dealing with constrained

time delay systems are well highlighted in ISC. In [6], an

MPC based ISC was designed with air bypass valve uthr and

spark timing, uspk, as control inputs, both constrained and

affected by time delay. The time delay on the airflow δa is

long and caused by physical phenomena, while the delay on

the spark channel δs is smaller and mostly computational.

However, the spark has smaller steady-state authority than

the airflow over the engine torque.

The engine speed dynamics [35] are described by

Gthr(s) = k1
1

s2

ω2
1

+ 2 ζ1

ω1
s + 1

, (8a)

Gspk(s) = k2

s
a

+ 1
s2

ω2
2

+ 2 ζ2

ω2
s + 1

, (8b)

Y (S) = Gthr(s)e
−δasUthr(s) + Gspk(s)e

−δssUspk(s), (8c)

where Y (s) is the Laplace transform of the engine speed

ξ(t). The transfer functions (8a), (8b) sampled with sampling

period Ts = 20ms were used as MPC prediction model.

The ISC inputs are constrained, and the difference between

the engine speed and reference rξ has to remain bounded, in

order to avoid the possibility of engine stalls and flares,

emin ≤ ξ(k) − rξ(k) ≤ emax, (9a)

umin
thr ≤ uthr(k) + uFF (k) ≤ umax

thr , (9b)

umin
spk ≤ uspk(k) ≤ umax

spk (k), (9c)

where uFF is the airflow feedforward which is approx-

imately constant, and where umax
spk is the upper bound

on spark timing (due to knocking limit), which changes

significantly with the engine conditions (e.g., temperature,

load). In addition in [6], constraints on the control input

variations (i.e., slew rate) were also considered. In order to

guarantee regulation to the reference in presence of constant

disturbances, and to recover full spark reserve in steady state,

the MPC cost function is formulated as

N
∑

k=1

qy(ξ(k|t) − rξ(t))
2 + qiεi(k|t)

2 + qspkuspk(k|t)
2

+rthr∆uthr(k|t)
2 + rspk∆uspk(k|t)

2 (10)

where ∆uthr, ∆uspk are the rate of change of the inputs, and

εi(k|t) is the integral action that ensures offset-free rejection

of constant disturbances, i.e.,

εi(k + 1|t) = εi(k|t) + Ts(ξ(k|t) − rξ(t)). (11)

For the early investigations, a simplified form of (10) was

used with the qi, qspk, rspk = 0 and umax
spk (k) = umax

spk . A

detailed simulation study was performed for various MPC

horizons and constraint/performance weights [6]. The results

showed that compared with other techniques [34], such as

robust µ-synthesis, MPC was especially effective in dealing

with actuator constraints. In addition, it was suitable for a

tuning that more directly influenced the key attributes and

objectives. It was also found that a preview of known torque

disturbances or loads, e.g., air conditioning, can substantially

improve the ISC performance and reduce or even eliminate

the need for spark control. For the considered 2.9L engine,

only 0.5s preview of step-load change resulted in up to ten-

fold reduction in engine speed sag.

Another early automotive application of MPC was Trac-

tion Control (TC) [22]. TC enhances driver’s ability to con-

trol a vehicle on slippery roads, by a tight and robust control

of tire slip to prevent the loss of tractive and lateral force

production capability. The TC dynamics typically include
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significant non-linearities, especially due to tires, which have

been modeled as piecewise linear functions in the force-

slip diagram leading to a hybrid MPC setting [22]. The

simulation results demonstrated significant advantages of the

hybrid MPC, which were subsequently confirmed through

in-vehicle implementation of both linear and hybrid MPC

executed with Ts = 20ms on a Pentium II laptop. Tests on

icy surfaces demonstrated feasibility of MPC methodology

and confirmed the superior performance of hybrid MPC

versus linear MPC for traction control. In particular, the

hybrid MPC controller with p = 1 in (2) led to up to a

20% reduction in peak slip deviation when compared to

linear MPC. It is believed that this was the first in-vehicle

implementation of hybrid MPC.

In [7], the application of hybrid MPC to mode switching

control in Direct Injection Stratified Charge (DISC) engines

was studied. The MPC coordinated electronic throttle, spark

timing and EGR valve to enable torque and air-to-fuel ratio

tracking and stratified to homogeneous mode transitions.

Mode dependent constraints on air-to-fuel ratio and spark

timing range were also enforced. The work represents one

of the first applications of hybrid MPC to control a complex

engine with constraints and different operating modes. Re-

lated ideas have been later explored for an advanced hybrid

electric powertrain for Jaguar-Land Rover applications [19].

In addition to the above, a number of other exploratory

MPC applications were evaluated at Ford. These include,

among others, drivability enhancement [36], magnetic valve

actuator control [14], and air-to-fuel ratio control [13].

B. Chassis Control

MPC has been considered to include road disturbance

information in suspension control [16], [17]. Further, taking

advantage of the recent advances in explicit MPC (5), it was

established that the optimal control for semi-active suspen-

sions exists in the form of an affine state feedback [18].

Prior to this discovery, it was not clear if an explicit optimal

solution can be obtained for semi-active suspensions, which

are usually modelled as a linear dynamic system with a

nonlinear passivity constraint or as a bi-linear system with

input constraints. The so-called “clipped optimal” control

that “clips” the optimal solution of an active suspension

is popular, but has been verified to be a sub-optimal so-

lution [37]. The MPC effort towards semi-active suspension

applications at Ford was the first to find the explicit solution

and provided a benchmark against other sub-optimal control

laws.

For autonomous vehicle development, MPC was applied

for real time path following in [5], [23], where it was

implemented with Ts = 50ms in a prototype vehicle with

steering actuation. Thanks to the prediction based on current

steering input and plant model, the MPC autonomous vehicle

proved to be more robust for varying road surface friction

than a specifically tuned steering robot [5]. In [23], the MPC

controller for the autonomous vehicle was extended to actu-

ate steering and braking. The MPC approaches implemented

in experiments include models of varying complexities (from
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Fig. 1. Idle speed control by MPC. Disturbance rejection. Base controller
(dot), single-input MPC (dash), multi-input MPC (solid).

two-track models with control on four braking torques,

to single track models with control on yaw moment, [5],

[23]). With each model, both nonlinear model predictive

control (NLMPC), and linear time varying model predic-

tive control (LTVMPC) were developed and tested on a

double lane change maneuver. While the NLMPC (1) uses

a fully nonlinear model incorporating Pacejka tire model,

LTVMPC linearizes the model at each sampling time (7) and

identifies the cornering stiffness in real time. These studies

demonstrated that the proposed algorithm: (i) coordinates

the use of steering and braking, in presence of constraints,

(ii) stabilizes the vehicle despite operating in a wide range

of tire/road characteristics, (iii) can reproduce complex

countersteering behavior performed by skilled drivers.

IV. RECENTLY PROTOTYPED APPLICATIONS

We now survey three applications of MPC in different

areas of automotive control that were developed at Ford and

became operational on fully drivable prototype vehicles.

A. Idle Speed Control: refinements, synthesis, vehicle tests

The ISC controller described in Section III-A has been

recently extended, implemented in a prototype vehicle, and

tested under real and extreme operating conditions [3], [24].

The extensions include the use of the full set of weights

in (10) to optimally achieve the specifications, the use of the

time-varying spark constraint in (9), and the use of electronic

throttle and spark torque ratio as control commands, rather

than bypass valve and spark timing. The MPC controller for

ISC is synthesized in explicit form (5) with Ts = 30ms, and

tested in a prototype vehicle with a 4.6L, V8 engine and a

4 speed automatic transmission.

Figure 1 shows a test where the power steering pump,

which acts as a load on the crankshaft, is suddenly engaged

at full power. The MPC that adjusts both throttle and spark

is compared with a base controller, which has two separated

error-based feedback loop (PIDs) with feedforward, and with

an MPC that actuates only the throttle yet retains the base

controller for the spark channel. For the controllers that do

not enforce spark constraints, the spark request is saturated a

posteriori. Since MPC accounts for time delays and provides

nonlinear control action induced by the constraints and idle
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Fig. 2. Idle speed control by MPC. Double disturbance rejection. Base
controller (dot), single-input MPC (dash), multi-input MPC (solid).

speed tracking error, higher control gains can be achieved,

and disturbance rejection capabilities are improved.

Figure 2 reports a more challenging test where, after full

power engagement of the power steering pump, the AC

compressor is also engaged at full power. Since the power

steering load brings the engine closer to knocking, when the

second disturbance (AC compressor) hits, the controller has

very limited spark authority. The MPC that controls throttle

and spark can compensate the reduced spark authority by

a more aggressive throttle action, hence maintaining good

performance. Instead, the other controllers show a significant

performance degradation since they are unaware of the loss

of spark authority.

Due to the improved control performance the spark reserve

can be reduced [24], hence improving the fuel economy at

idle by approximately 4.5% in drive, and 6.5% in neutral.

B. Active front steering and differential braking: coordina-

tion of constrained actuators

The capability of MPC for coordinating multiple con-

strained actuators to achieve multiple goals has shown a

positive impact in coordinating active front steering (AFS)

and differential braking in vehicle stability control [4], [15].

In this application, the controller actuates the AFS and

the brakes to simultaneously achieve yaw rate tracking and

vehicle stabilization, which are sometimes conflicting goals.

The prediction model is the bicycle vehicle dynamics

model with respect to the the front and rear tire slip angles

αf , αr,

α̇f =
Ff + Fr

mvx

−
vx

a + b
(αf − αr + δdrv + δAFS),

+
a

vxIz

(aFf − bFr + Y ) − ϕdrv − ϕAFS, (12a)

α̇r =
Ff + Fr

mvx

−
vx

a + b
(αf − αr + δdrv + δAFS),

−
b

vxIz

(aFf − bFr + Y ), (12b)

δ̇AFS = ϕAFS, (12c)

δ̇drv = ϕdrv, (12d)

r =
vx

a + b
(αf − αr + δdrv + δAFS), (12e)

where δdrv, δAFS are the driver and AFS steering angles,

respectively, ϕdrv, ϕAFS are the corresponding steering rates,

and δ = δdrv + δAFS is the total road wheel angle. In (12),

the longitudinal vehicle speed vx, the vehicle mass m, the

vehicle inertia along the vertical axis Iz , and the distances of

the front and rear axes from the center of mass, a and b, are

known and constant. Y is the yaw moment along the vertical

axis that is obtained by applying different braking torques at

different wheels, and r is the vehicle yaw rate. The forces

Ff and Fr are the front and rear tire forces, which can be

modelled as piecewise affine functions,

Fj(αj) =







dj(αj + pj) − ej if αj < −pj ,

cjαj if −pj ≤ αj ≤ pj ,

dj(αj − pj) + ej if αj > pj ,
(13)

for j ∈ {f, r} where pj are the saturation angles, that model

the three regions of operation of each tire pair (i.e., linear,

positive, and negative saturation). The full steering vehicle

dynamics is modelled by (12) and (13) thus resulting in a

PWA system (6), which is converted to discrete time and

formulated in switched form [15] to reduce complexity.

Constraints are enforced on slip angles and actuators,

αf,min ≤ αf ≤ αf,max, αr,min ≤ αr ≤ αr,max, (14a)

δmin ≤ δAFS ≤ δmax, Ymin ≤ Y ≤ Ymax, (14b)

ϕmin ≤ ϕAFS ≤ ϕmax. (14c)

The cost function encodes the multiple problem objectives,

to track the driver-desired yaw rate r̂, to maintain the vehicle

“stable” (i.e., to keep the slip angles small), and to minimize

the use of the brakes and of the steering rate,

N−1
∑

k=0

q
(r)
i (r(k|t) − r̂(t))2 + q

(ϕ)
i ϕAFS(k|t)2

+q
(Y )
i Y (k|t)2 + q

(αf )
i αf (k|t)2 + q

(αr)
i αr(k|t)

2. (15)

The feedback law of the MPC controller formulated

on (12), (13) and on (14), (15), sampled with Ts = 50ms,

is tested in a prototype RWD vehicle, equipped with AFS,

differential braking, and a precise localization system.

−10 0 10 20 30 40 50
−4

−3

−2

−1

0

1

2

3

4

x [m]

y
[m

]

Fig. 3. Trajectories in a double lane change maneuver with (solid) and
without (dash) MPC stability control. Vehicle center of mass (circle) and
heading (line).

Among several tests executed, the capabilities of MPC are

clear in the double lane change, see Figures 3, 4. In Figure 3

the trajectories obtained with and without the MPC controller

are shown, where we observe that the double lane change
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Fig. 4. MPC stability control performance in a double lane change.

is not properly completed without the controller. For the

test with MPC, the states, inputs, and outputs time histories

are reported in Figure 4. Initially, the MPC applies only

a small countersteering by AFS to keep the yaw rate as

close as possible to the desired yaw rate, and the brakes

are used to stabilize the vehicle. Starting from around t =
3.5s, the AFS is actuated more aggressively to complete

the maneuver, since the stability and the tracking objectives

become coincident.

C. Series HEV power management: transient behavior opti-

mization

An application that is closer to the classical use of MPC

in chemical process control [2], namely, transient response

optimization, is the energy management in a Series Hybrid

Electric Vehicle (SHEV). In the SHEV, the electric motor is

the only source of traction while the engine power feeds a

generator. This converts the mechanical power into electrical

power which is coupled with the battery power in a DC bus.

It was shown in [25] that for the SHEV an optimal steady

state engine-generator operating curve, ζ∗sys, as a function of

the desired generator power Pgen, can be found

ζ∗sys(Pgen) = arg max
ωeng,τeng

ηsys(ωeng, τeng) (16a)

s.t. ηgen

(ωeng

κ
, κτeng

)

ωengτeng = Pgen, (16b)

where ωeng, τeng are the engine speed and the engine

torque, ηgen and ηsys are the efficiency of the generator, and

combined efficiency of the engine-generator cascade, as a

function of speed and torque, respectively, and κ is the gear

ratio between engine and generator. For a desired traction

power, an optimal steady state operating point in curve (16)

can be identified. However, the transitions from one point to

another involve powertrain and battery dynamics and need

to be carefully controlled to optimize fuel consumption. In

particular, it was shown that it is advantageous to use the

battery as a buffer to “smooth” the engine transients. At

the same time, the operating range of battery power and

battery state-of-charge have to be carefully enforced. Thus,

MPC was chosen as the candidate control strategy due to its

capability of optimizing the transient while enforcing operat-

ing constraints. MPC has been previously applied to energy

management of different HEV configurations in [19], [33],

explicitly aiming at the fuel flow minimization. However, due

to the complexity of the model, either nonlinear or piecewise

affine (6), the resulting controllers were too complex for

vehicle implementation.

The MPC prediction model for SHEV energy management

is composed of the battery state of charge (SoC) dynamics,

identified from data as the (possibly switching) integrator,

SoC(k + 1) = SoC(k) − γPbat(k), (17)

where Pbat is the battery power. In addition, the generator

power (Pgen) dynamics (which uniquely assigns the engine

dynamics) satisfies

Pgen(k + 1) = Pgen(k) + ∆Pgen(k) + Pxt(k), (18)

where ∆Pgen is the generator power variation, and Pxt is a

slack power to be used only during sudden accelerations.

The powerflow from/to the battery is assigned by

Pbat(k) = Pbus(k) − Pgen(k) − ∆Pgen(k)

+Pbrk(k) − Pxt(k). (19)

where Pbus is the desired tractive power reported at the DC-

bus, and Pbrk is the non-regenerative brake power.

The constraints of the MPC problem enforce the operating

ranges of the powertrain components,

SoCmin ≤ SoC ≤ SoCmax, Pmin
bat ≤ Pbat ≤ Pmax

bat , (20)

∆Pmin
gen ≤ ∆Pgen ≤ ∆Pmax

gen , Pmin
gen ≤ Pgen ≤ Pmax

gen ,(21)

and the cost function has the following form,

N−1
∑

k=0

r∆∆Pgen(k|t)2 + ρ(Pbrk(k|t)
2 + Pxt(k|t)

2) (22)

+sbatPbat(k|t)
2 + qSoCSoC(k|t)2 + qη η̃−1

sys(Pgen(k|t)).

The cost function weights in (22) model the tradeoff of
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objectives such as the reduction of the variation of the

provided generator power (r∆), the stability of the battery

state of charge around its setpoint (qSoC), the reduction on

battery powerflow (sbat), and also a slightly offsetting the

steady state generator power to a point with higher efficiency,

(qη), based on an approximated quadratic inverse efficiency

function (η̃−1). The large weight ρ forces certain variables

to 0, whenever possible.

Based on (17)–(22), a linear-quadratic MPC controller is

obtained, for which the explicit feedback law (5) is com-

puted. The controller has been implemented in the prototype

vehicle standard engine control unit, and it has been eval-

uated for fuel consumption on a chassis-roll dynamometer.

Figure 6 shows the distribution of the engine operating points

in an experiment on the city (UDDS) driving profile, where

the engine operating points are concentrated around the opti-

mal curve ζ∗sys. This is due to the MPC action that smoothen

the transient. The behavior of the controller in reducing

the engine transients can be noticed in Figure 5 where the

generator power variations are significantly damped with

respect to the tractive power request variations, with the

battery used as a buffer. Repeated experimental tests have

shown a fuel consumption reduction of about 5%, when

compared to two baseline strategies.

V. FUTURE PERSPECTIVES

In the coming years the number of multivariable automo-

tive control applications is expected to increase as vehicles

subsystems will be increasingly coordinated to improve fuel

economy and safety. Thus, novel opportunities for MPC will

emerge, including coordination of braking and powertrain

in torque vectoring [38], coordination of engine and trans-

mission [39] to improve fuel economy and responsiveness,

control of complex engines such as GTDI and HCCI [40].

Being used at a supervisory level, more interaction of

MPC with the driver is expected. Thus, a major research

challenge for MPC will be to include a driver prediction

model. This is already an ongoing effort. For instance, the

AFS-braking controller described in Section IV-B has been

recently extended with a more detailed prediction model of

the driver steering behavior. This results in a controller that,

while guaranteeing the same stability performance, is much

more predictable and pleasant to drive. Similarly, a SHEV

energy management strategy was recently proposed in [41],

where the driver behavior is modelled as a Markov Chain

learned in real-time, and used in a stochastic MPC algorithm.

The resulting strategy adapts to the way the car is driven,

to the drive cycle, and to the environment, achieving fuel

economy close to the one obtained with future information.

MPC has shown large potential for use in automotive

applications. However, there are also some fundamental

challenges to overcome. First, calibrating MPC, similarly

to other model-based approaches, can be complex. Some

steps are being taken to reduce the calibration effort (see

for instance [27], [42], and the references therein). Also, for

several applications the MPC controllers are still too com-

putationally complex, and low complexity explicit laws [43],

[44] or fast approximated optimization algorithms [45] are

necessary. Also, to guarantee the stability of MPC a-priori,

without an excessive increase of the algorithm complexity

is still challenging [39]. Finally, several applications have

significant nonlinearities which complicate MPC design and

implementation.

Overall, MPC is at the stage where it can be used in a

number of automotive applications. The key to its widespread

acceptance in the automotive industry is tightly linked to

overcoming the few remaining challenges.
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