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Abstract— Assembly tasks are challenging for robot manip-
ulation because the robot must reason over the composed
effects of actions and execute multi-objective behaviors. Robots
typically use predefined priorities provided by users to de-
termine how to compose controller behaviors, but we want
the robot to autonomously select these compositions based on
their composed effects within the task. We present Composable
Causality in Semantic Robot Programming to allow robots to
reason over the composed effects of controllers when executing
multi-objective actions and autonomously compose controllers
without predefined priorities. Qur proposed causal control basis
combines controller behaviors with causal information about
how the behaviors can be used to execute high-level symbolic
actions. The robot uses the causal control basis to predict the
transition probability of achieving the composed effects of a
multi-objective action. The composed causality estimates are
used to select which action to execute within the context of
a furniture assembly task. We evaluate the robot’s transition
probability estimates in different furniture assembly trials in
simulation on the Baxter robot. The robot’s ability to assemble
furniture using different multi-objective connection actions
demonstrates the usefulness of the composed causality estimates
from our causal control basis.

I. INTRODUCTION

Assembly tasks present unique challenges in reasoning
over objects and executing complex behaviors in long-
horizon tasks. Robots have difficulty assembling objects be-
cause they have to compose the effects of multiple behaviors
and maintain these composed effects as they move on to the
next step. We need a flexible way to program our robots to
perform assembly tasks and Semantic Robot Programming
(SRP) [24] has emerged as an intuitive way to declaratively
program robots. Within the SRP paradigm, robots can infer
goal conditions from a demonstrated goal scene and reason
over available objects and actions to reach the goal. The
focus of SRP was to address the perceptual challenges
involved in perceiving the demonstrated goal conditions.
Now that these perceptual challenges have been addressed,
we aim to extend SRP in terms of the types of actions
that the robot can perform. By extending SRP, we will be
able to declaratively program robots to perform actions with
composed effects on objects, as is expected in challenging
assembly tasks. Specifically, robots need to reason about the
objects themselves, compose effects on these objects during
task execution, and overcome the challenges of assembly
tasks.

To execute actions, it is common to use off-the-shelf
motion planners. While motion planners allow robots to plan
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Fig. 1: A robot assembling furniture through goal-directed
manipulation. The robot must reason over the composable
causality of controllers to achieve the task goal.

how to move from one point to another, they do not provide
the capabilities necessary to perform complex manipulation
tasks, especially assembly tasks. Motion planners do not
allow robots to move from one point to another while
achieving concurrent motion goals—for example, screwing
in a screw involves moving and performing a spiraling
motion concurrently—or react quickly to changes in the
environment. To move beyond the capabilities of motion
planners, many works use object-centric controllers within
a control basis. Controllers can also be composed together
to execute more complex multi-objective actions, meaning
multiple controllers are executed concurrently. Controllers
within a control basis provide a more robust, reactive, and
capable approach to executing the complex, multi-objective
actions expected in assembly tasks.

The compositions of controller behaviors necessary to
perform multi-objective actions are generally determined by
a predefined priority provided by the user. However, we want
robots to autonomously compose controllers without these
predefined priorities. Reasoning over actions symbolically
can be disconnected from the realities of physical execution.
Instead, we expect robots to reason over the preconditions
and postconditions of the executable action and ground the
action effects on the objects in the perceived scene. Only
recently have researchers started to address the question
of autonomously composing controllers for multi-objective
actions [21]. Figure 1 shows an example of the challenges a
robot faces while executing a multi-objective action during
an assembly task. It is difficult to express the qualitative
insights users have on controller compositions in a precise,
quantitative way that can be reasoned over and used by
robots. Instead, we want to place the responsibility on the
robot to discover why one controller composition performs
better in some situations than others, lessening the cognitive
load on the user. The robot will need to reason over the
composed effects of different compositions autonomously
in order to execute multi-objective actions within the SRP
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paradigm.

In this paper, we propose a causal control basis to build on
SRP and allow robots to autonomously compose controllers
to achieve assembly tasks. We take inspiration from works
that apply notions of causality to goal-directed manipulation
tasks [23]. Using the given causal control basis, the robot
can estimate the transition probability that a controller com-
position will achieve the desired composed effects on the
objects in the scene. During task execution, the robot will
autonomously compose controller behaviors based on their
predicted composed effects and execute the afforded multi-
objective actions to assemble a piece of furniture. We test
our causal control basis in simulation on the Baxter robot
in a variety of furniture assembly tasks and find that it pro-
vides the robot with sufficient information to autonomously
compose controllers without predefined priorities from the
user. Our work on Composable Causality in Semantic
Robot Programming demonstrates that the causal control
basis allows the robot to achieve challenging goal-directed
manipulation tasks within the SRP paradigm.

II. RELATED WORK
A. Assembly Tasks

We consider construction tasks as an interesting domain
for complex goal-directed manipulation. Assembly is a chal-
lenging problem because it requires the ability to plan over
long-horizons, understand properties of objects, and manipu-
late objects in particular ways. Nair et al. [10] present a tool
construction pipeline that allows robots to construct tools to
achieve tasks. Many works use learning from demonstration
to teach reusable motion primitives that the robot uses to
assemble different objects [25], [22], including furniture such
as tables [11]. Lee er al. [8] developed the IKEA Furniture
Assembly Environment as a test-bed for the perception,
planning, and control required to perform construction tasks.
Though their assembly environment is designed for rein-
forcement learning, we use the IKEA Furniture Assembly
Environment to allow the robot to predict the effects of a
given control policy. Together, these works emphasize the
immense interest and challenge of tool-use and construction
tasks, which motivates our choice of assembly tasks as our
problem domain.

B. Object-Centric Controllers and Control Basis

Due to the significance of object affordances [5], robotics
research has gravitated towards interacting with objects
through object-centric motions. Object-centric behaviors are
expressed in task frames that bridge the gap between high-
level symbolic description of actions and the low-level
servomechanism execution of actions [1], [6]. For example,
expressing a crank-turning-action in world frame involves
reasoning over the arc the crank might follow. But expressing
the same crank-turning-action in a task frame fixed to the
crank involves applying force along an axis of the crank until
resistance is met [1]. Reasoning in the task frame simplifies
the expression of the action and emphasizes the effect on the
object itself.

To execute these object-centric actions, researchers use
object-centric controllers, which send joint commands such
that the robot achieves low-level motion primitives. Con-
trollers offer advantages over motion planners because they
can be used within a control basis that forms the building
blocks of all behaviors the robot might need to execute.
The behaviors within a control basis can be composed to
yield multi-objective behaviors, meaning multiple controllers
are being executed concurrently [19]. For example, robust
grasping could be formulated as a multi-objective action that
involves positioning an end-effector while aligning the ap-
proach axis of that end-effector with the target object. Com-
posing multiple behaviors induces a priority between these
behaviors, which means one behavior will likely be achieved
first and in the worst case may impede the other controller(s)
from converging. The priorities between controllers—the
particular composition of these controllers—can greatly im-
pact the effect of the multi-objective action. Many works
explore composing controllers in atomic actions such as
grasping [16], [17], [18] or conditioning behaviors [7] such
as avoiding joint limits and singularities.

Compositions of controller behaviors are generally deter-
mined by a predefined priority provided by the user. For
example, a user may determine experimentally that priori-
tizing positioning over alignment results in the most robust
grasp poses. Therefore, the user will hard-code the robot to
always perform multi-objective grasps by composing these
behaviors such that positioning is the highest priority. How-
ever, we want robots to autonomously compose controllers
to increase their reasoning power over complex manipulation
actions. Sharma et al. [21] present a reinforcement learning
approach to determining how controllers should be composed
to perform different tasks. They demonstrate that their ap-
proach allows robots to autonomously compose controllers
in atomic actions such as block pushing, screw turning, and
door opening. The work of Sharma er al. demonstrates a
significant step towards autonomously composing controllers
in order to perform atomic actions. We build on this work
and extend it to long-horizon construction tasks, where it
is necessary to reason about how the multi-objective action
will be used in sequence to achieve a larger task goal. This
distinction requires the robot to have a deeper understanding
of when controller behaviors can be enacted, what the com-
posed effects of multi-objective actions will be, and how to
maintain these composed effects throughout task execution.

C. Causality

Work on causality analyzes cause and effect relationships
between variables. Causal relationships can be expressed as
Causal Bayesian networks (CBNs) [4] and analyzed through
queries [13], [14], [15]. Traditionally, work on causality
refers to the effects of changes to variables on the distribu-
tions of other random variables in the system. In the context
of robot manipulation, causality takes on a different meaning,
referring to how robot actions cause effects on objects in the
scene. Causality has been particularly helpful in allowing
robots to reason over long-horizon tasks, such as assembly
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tasks. Work in robot manipulation often uses several causal
models. Xiong et al. [23] found that hierarchical spatial,
temporal, and causal models can be learned from demon-
stration and used to achieve cloth-folding tasks. We build on
this work by incorporating hierarchical temporal and causal
models into our proposed causal control basis to allow robots
to autonomously compose controllers and reason over the
composed effects of actions in long-horizon tasks.

III. METHODS
A. Problem Formulation

To perform assembly tasks that require multi-objective
behaviors, the robot needs to predict the transition function
of the controllers—the probability that a given composition
of controllers will achieve their composed effects. We assume
we have a control basis ® of controllers that can be composed
using nullspace projection to achieve multiple objectives.
Given a task goal, the robot constructs a high-level task
plan using an off-the-shelf task planner and decomposes each
symbolic action into a sequence of executable motions. For
actions that require multi-objective behaviors, we want the
robot to autonomously compose the given controllers and
execute the planned symbolic action by reasoning over the
causality of the controllers based on the transition probability
estimates.

We formulate this probabilistic planning problem as a
Markov Decision Process (MDP) [9], [20] (S, A, P, C'). The
state space S is determined by the robot configuration space
and the poses of the objects in the scene. A control basis
is a set of controllers ® = {¢;}¥,. The action space
A is the set of all possible controllers and compositions
in the given control basis ®. The controllers that can be
running at any given time are elements of the power set
of the control basis P(®). Suppose we have controllers ¢;
and ¢; that achieve objectives i and j, respectively. One
possible composition of these controllers is ¢; <\¢;, where the
“subject-to” relation < indicates that ¢; has a higher priority
than ¢;. Let M; € P(®) be the set of controllers running
at time ¢. Since composing controllers induces an ordering
(priority) between them, all possible compositions of the
running controllers M, are elements of the symmetric group
S, which is the set of all possible permutations over the
elements (controllers) in M. For example, if M; = {¢;, ¢;},
then Sy, = {¢; < ¢;, ¢; < ¢;}. Therefore, the action space
for control basis ® is A = {Sp, | My € P(®)}. The
transition probability P(s’ | s, a) indicates the probability of
achieving the composed effects s’ of a (composed) controller
a € A when enacted in the current state s. The cost function
Cy(s) is the cost of enacting controller a in state s. We
want the robot to execute the controller a that will achieve
its composed effects by minimizing its objective function ¢,
meaning Cy(s) = dq(8).

The action space is determined by the causal control basis,
but the robot is not given any information about the transition
probabilities associated with the (composed) controllers. The
robot needs to estimate the transition probability for each
possible controller composition.

B. Causal Control Basis

We propose a causal control basis ® that the robot will
use to predict the transition probabilities of actions and
determine which composition of controllers to execute to
achieve assembly tasks. The causal control basis is given to
the robot and is comprised of the following components:

e The implemented controllers in the control basis &,
which can be combined using nullspace composition
to perform multi-objective actions and enact the affor-
dances in the scene.

e The set of temporal graphs G, which represent the
sequence of controllers that correspond to high-level
symbolic actions. The root of the temporal graph is
the high-level symbolic action, and each low-level con-
troller behavior required to execute this action is a child
of the root, arranged from left-to-right in sequence.
The structure of the temporal graph is inspired by
previous work that uses hierarchical graphs within robot
manipulation tasks [23].

« The set of composed causal graphs G, which describe
what controllers are involved in a multi-objective action.
Causal graphs are comprised of preconditions, which
are literals that must be true before an action is taken;
controller behaviors that must be executed concurrently
to achieve a multi-objective action; the effects of the
individual controllers; and the desired composed effects,
which are literals that should be achieved by the com-
position of the controllers.

Our causal control basis is denoted ® = (D,Gr,Ge).
For the tasks considered in the experiments, we define the
control basis—discussed in more detail in Section IV-A.1—
to include pose, position, rotation, and screw controllers.
However, our formulation will work with an arbitrary control
basis.

To predict the transition probabilities of the controller
compositions, the causal control basis performs offline walk-
outs. Before task execution, the robot uniformly samples
initial states s € S and controller goals s’ € S. Suppose
the robot is predicting the transition probability for arbitrary
controller composition ¢ <1 ¢; < ¢; (where the “subject-
to” relation < indicates the priority of behaviors in the
composition). The robot simulates execution of the composed
controllers until they converge or until large time thresh-
old T. The predicted transition probability that the action
a = ¢, <¢; < ¢, achieves the composed effects s’ based
on the offline walkout is:

1 objectives met
P(s' | s,a) =40
ba(s)=¢a(sT)
ba(s)
where s is the state at time threshold 7" and ¢, indicates
the composed cost or objective function values at the given
state. When the controllers meet their objectives, ¢, (s’) = 0.
If bad progress is made, then at some state s;, the con-
trollers reached a local minimum—objective function ¢, (s¢)

bad progress (1)
otherwise
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Fig. 2: Our pipeline for Composable Causality in Semantic
Robot Programming.

stopped decreasing—or the objective function has increased
beyond the starting value—a,(s¢) > ¢o(s). Otherwise, the
controllers made some progress to decreasing the objective
function. For a large number of random samples, the average
predicted transition probability indicates how the controller
composition performs across action instances. During task
execution, the robot will query the causal control basis
for the controller composition with the greatest predicted
transition probability and will execute that composition.

IV. EXPERIMENTS AND RESULTS

Figure 2 describes the pipeline for assembling furniture
using Composable Causality in Semantic Robot Program-
ming and the use of our proposed causal control basis. We
assume that the robot has parsed the goal conditions from a
demonstrated goal scene of the task as in SRP [24] and that
we have affordance-based perception' to perceive the objects
and affordances in the scene. These perceived objects and
affordances seed the initial state of an off-the-shelf high-level
task planner?, which constructs the task plan. The causal
control basis converts each action in the high-level task plan
into a sequence of (possibly composed) controller commands
and instantiates the action based on the current poses of the
objects and their connection sites. The robot executes this
sequence of controllers to achieve the task goal of assembling
furniture.

We evaluate the proposed causal control basis in various
furniture assembly tasks in simulation using the Baxter robot
in the IKEA Furniture Assembly Environment® [8]. We
assume known object poses during manipulation and grasp
poses for every object part are provided. The connection
of two parts is implemented as welding in the Mujoco
simulation, which checks the position and axis alignment
of connecting points.

A. Causal Control Basis for Furniture Assembly

1) Control Basis Implementation: In this work, we define
the control basis ® for furniture assembly by 6D pose @spposes

IFor example, Affordance Coordinate Frames (ACFs) [2].

2Pyperplan STRIPS planning library: https://github.com/
aibasel/pyperplan

3https://clvrai.github.io/furniture/

Composition | Predicted Transition Probability
a P(s' | s,a)

¢pos < ¢rol 0.723

Prot <1 Ppos 0.711

TABLE I: Transition probability predictions for insert
action, based on 500 offline walkouts for each composition.

Composition Predicted Transition Probability
a P(s' | s,a)
brot < Pscrew < Cf)pos 0.937
Ppos < Pscrew < Prot 0.936
¢screw < ¢pos < (brot 0.929
¢pOS < (z)rol < ¢screw 0925
Pscrew < ¢rot < (bpos 0.923
Grot <I Ppos I Pscrew 0.904

TABLE II: Transition probability predictions for screw
action, based on 500 offline walkouts for each composition.

3D position ¢pes, rotation ¢ror, and screw @gerew controllers.
All of these controllers are object-centric potential field
controllers based on attractive potential fields that attract
the robot and objects to the controller goal. Our furniture
assembly control basis ® is the set of these controllers:

o = {¢6Dp0sea ¢pOS7 ¢r0ta ¢screw} 2

2) Temporal Graphs: The set of temporal graphs Gr
indicate the sequence of controllers that correspond to the
high-level pick-up, insert, and screw actions, as seen
in Figure 3. For multi-objective connection actions insert
or screw, the robot will have to determine what composition
of the controllers (indicated in the corresponding causal
graph in Figure 4) to execute within the sequence (indicated
by the blue nodes in Figure 3) by selecting the composed
controller with the maximum predicted transition probability.

3) Causal Graphs: The set of causal graphs G¢ in-
dicate the composed effects of the controllers within the
multi-objective insert and screw actions. As shown in
Figure 4, the causal graphs indicate the controllers that
are involved in these connect actions, the pre-conditions of
enacting these compositions, and the intended effects of these
compositions. The robot will use the transition probability
predictions from the causal control basis to determine how
to compose these controllers together.

B. Composed Causality Predictions

For the insert and screw connection actions, the robot
simulated 500 executions of each possible composition. We
used time threshold 7" = 300 controller updates as the cutoff
for the offline walkouts. The predicted transition probability
P was computed as described in Section III-B.

The transition probability predictions for the insert
and screw actions are shown in Table I and Table II,
respectively. The composition with the highest probability
for the insert action indicates that positioning the object
should be performed subject to aligning the object with
the target, @pos <! Pro.. The composition with the highest
probability for the screw action indicates that aligning
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Action execution sequence mm)

pick—up(obj)

open(ee) |[#sppose (Pre—grasp(obi)) [ Psppose(grasp(obi)) || close(ee) |[#6Dpose (Post—grasp(ob)) |
(a) Temporal graph for pick-up action.
insert(obj, target)
| @eppose (ready(target)) | | argmax( P(inserted (obj, target)| s, a)) | | connect(obj, target) | | open(ee) |
(b) Temporal graph for insert action.
screw(obj, target)
| Peppose (ready(target)) | | argmax( P(screwed—in(obj, target)| s, a)) | | connect(obj, target) | | open(ee) |

(c) Temporal graph for screw action.

Fig. 3: The temporal graphs relating high-level symbolic actions to the low-level controller behaviors in the control basis in

sequence from left to right.

( grasped(obj) )
( ¢pos(pgnal) ) ( ¢rot(qgoal) )

(at(obj, pgoar) ) (votated(obj, qgea) )

( inserted(obj, target) )

(a) Causal graph for insert action.
( grasped(obj) )

( ¢pos(pgnul) ) ( ¢rot(qgoal) ) ( ¢screw(e) )

( at(obj, Pgoat) ) (rotated(obj,qgml)D (screwed(obj,e) )

( screwed—in(obj, target) )

(b) Causal graph for screw action.

Fig. 4: The causal graphs for the multi-objective connect
actions in the control basis for furniture assembly tasks.

the object should be performed subject to screwing and
positioning the object, ¢rot < Pscrew <1 Ppos-

C. Furniture Assembly Task Results

The composition with the maximum transition probability
prediction is used to execute connect actions in a variety of
furniture assembly tasks to test the accuracy of the estimated
composed causality of the controllers. We tested the insert
action within 10 random trials of swivel chair assembly
and tested the screw action within 10 random trials of
table assembly. Across all trials, we compute the average
task time and success rates of the pick-up action, the
multi-objective insert and screw actions, and the entire
assembly task. Summary information for the swivel chair
trials are in Table III and table trials are in Table IV.

Pick-Up Action Success Rate 0.606
Insert Action Success Rate 0.714
Swivel Chair Assembly Task Success Rate 1
[ Average Execution Time (s) [ 266.241 |

TABLE III: Results from 10 swivel chair assembly tasks,
with 33 pick-up attempts and 28 insert action attempts.

Pick-Up Action Success Rate 0.909
Screw Action Success Rate 0.952
Table Assembly Task Success Rate 1
[ Average Execution Time (s) [ 492.072 ]

TABLE IV: Results from 10 table assembly tasks, with 44
pick-up attempts and 42 screw action attempts.

When actions failed, it was often due to joint limits or
local minima being reached, especially during the pick-up
actions. This is due to the predefined grasp poses that we
assume are provided to the robot. Selecting grasp poses
is not the responsibility of our causal control basis; in-
stead, we assume we have known grasp poses, similar to
affordance templates [6]. The success rates of the multi-
objective connection actions reflect the performance of the
causal control basis. For 28 insert attempts across 10
swivel chair assembly trials, the insert action success rate
was 0.714 and the task success rate was 1. For 42 screw
attempts across 10 table assembly trials, the screw action
success rate was 0.923 and the task success rate was 1. The
success rates for both actions in the swivel chair tasks are
lower because the object parts required the robot to reach
its arm much closer to the floor, and towards the limits of
its reachable workspace. Images from three of the random
swivel chair and table trials are in Figure 5.

The similarity of the multi-objective connection action
success rates (Table III and Table IV) and the predicted
transition probabilities (Table I and Table II) indicate that the
transition probability predictions accurately capture the per-
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(a) Swivel Chair Assembly Trail 1.

(b) Swivel Chair Assembly Trail 2.

(c) Swivel Chair Assembly Trail 3.

(d) Table Assembly Trial 1.

(e) Table Assembly Trial 2.

(f) Table Assembly Trial 3.

Fig. 5: Execution of three swivel chair assembly trials (left) and three table assembly trials (right) using multi-objective
insert and screw actions to connect parts together, respectively.

formance of the compositions during task execution. When
the connect actions did not result in successful connections
(due to joint limits or collisions between objects), the robot
would retry the action. The task success rate for both the
swivel chair and table tasks indicate that the robot was able
to recover in these cases and achieve a successful connection.

V. DISCUSSION AND CONCLUSION

The robot’s ability to successfully assemble different fur-
niture pieces demonstrates the accuracy of our proposed
causal control basis in predicting the composed effects of
controller behaviors. The causal control basis effectively
extends the principles of Semantic Robot Programming—
that we need an intuitive way to declaratively program robots
to perform tasks—into more challenging tasks that involve
multi-objective actions. The causal control basis describes
the intended results of the multi-objective actions, but leaves
the robot to determine how to compose the appropriate
controller behaviors and perform the action successfully.
The causal control basis represents important information
that users often already provide robots in some form. For
example, the causal graphs encode information similar to
symbolic descriptions of action preconditions and postcon-
ditions and the temporal graphs encode information similar
to hard-coded behavior sequences. Therefore, our causal
control basis allows users to intuitively share knowledge
about actions such that robots can autonomously determine
how to enact those behaviors in challenging tasks.

Future work includes assembling more furniture pieces,
assembling furniture with more challenging initial part poses,
and implementing the controllers for a real-world robot rather
than in simulation. Implementing our work on a real-world
robot would also involve making the connection actions more
realistic by considering depth of insertion and screwing. We
will also create a more robust control basis by incorporating
dynamics, including controller behaviors for avoiding joint
limits and collisions between objects, and extending our
causal control basis to coordinate the arms for bimanual
manipulation tasks.

In this work, we proposed a causal control basis for
achieving Composable Causality in Semantic Robot Pro-
gramming. Our causal control basis allows the robot to
predict the transition probabilities of controller compositions,
thereby estimating the composed causality of multi-objective
actions. Our work in Composable Causality in Semantic
Robot Programming demonstrates that reasoning over a
causal control basis provides the robot with the declarative
knowledge necessary to autonomously compose controller
behaviors without predefined priorities to achieve furniture
assembly tasks.
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