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Challenges of Assembly Tasks

Barb Makes Things. “Dodecahedrum Frame — Fully Assembled!” YouTube.



Goal-Directed Manipulation Tasks

Initial Scene Goal Scene Semantic Robot
| Programming (SRP)

Understand goal state
through perception

Move beyond atomic
actions and motion
planning

[2] Z. Zeng, Z. Zhou, Z. Sui, and O. C. Jenkins. “Semantic Robot Programming for Goal-Directed Manipulation in Cluttered Scenes.” IEEE ICRA, 2018. 3



Goal-Directed Manipulation Tasks

Initial Scene Goal Scene

Extend SRP to allow
robots to reason over and
execute multi-objective
object affordances in
long-horizon tasks

[2] Z. Zeng, Z. Zhou, Z. Sui, and O. C. Jenkins. “Semantic Robot Programming for Goal-Directed Manipulation in Cluttered Scenes.” IEEE ICRA, 2018. 4



Manipulation Actions in Assembly Tasks

Scoop Pound Lift

Move beyond atomic actions to
long-horizon tasks

[1] L. Nair, J. Balloch, and S. Chernova. “Tool Macgyvering: Tool Construction Using Geometric Reasoning.” IEEE ICRA, 20109.



Executing Multi-Objective Actions

Composable
controllers

[3] R. Platt, A. Fagg, and R. Grupen. “Manipulation Gaits: Sequences of Grasp Control Tasks.” IEEE ICRA, 2004. 7



Learning Centietdter Corapmsibions

Force
Controller
e

Position

Controller

—>

Translation
Target
O

Nullspace composition

Priority of behaviors

[4] M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O. Kroemer. “Learning to Compose Hierarchical Object-Centric Controllers for Robot Manipulation.” CoRL, 2020.



Bridging the Gap

Symbolic Actions for
Long-Horizon Planning

1

Causality

l

Controller Behaviors for
Multi-Objective Action Execution




Contribution: Composable Causality

Autonomously compose controllers for multi-objective
affordances without pre-defined priorities

Causal control basis to predict composed effects of
multi-objective controllers
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[5] C. Xiong, N. Shukla, W. Xiong, and S.-C. Zhu, “Robot Learning with a Spatial, Temporal, and Causal And-Or Graph.” IEEE ICRA, 2016.
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Sinit
Initial State

Problem Formulation
Task Plan

Planned Symbolic
Action

a; aj

Executed Controllers

Sgoal
Goal State
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Problem Formulation

Task Plan
Construct plan?

Planned Symbolic

. Action
Sinit Sgoal
Initial State Goal State

a; aj

Executed Controllers
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Problem Formulation

Task Plan
Off-The-Shelf Task Planner

Planned Symbolic
Action
Sinit Sgoal
Initial State Goal State

a; aj

Executed Controllers
Behaviors to execute? »



Sinit
Initial State

Problem Formulation

Task Plan
Off-The-Shelf Task Planner

Planned Symbolic
Action

Decompose symbolic
action to controllers?

a; aj

Executed Controllers
Control Basis

Sgoal
Goal State
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Problem Formulation

Task Plan
Off-The-Shelf Task Planner

Planned Symbolic
' Action T

Temporal Graphs

Sinit
Initial State

Sgoal
Goal State

Executed Controllers
Control Basis 6



Problem Formulation

Task Plan
Off-The-Shelf Task Planner

Planned Symbolic
' Action T

Temporal Graphs

Sinit
Initial State

Sgoal
Goal State

Behaviors involved in
multi-objective action?

Executed Controllers
Control Basis 17



Problem Formulation

Task Plan
Off-The-Shelf Task Planner

Planned Symbolic
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Sinit
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Sgoal
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How to compose Executed Controllers
controllers? Control Basis o



Problem Formulation

Task Plan
Off-The-Shelf Task Planner

Planned Symbolic
' Action T
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How to compose Executed Controllers
controllers? Control Basis 5




Problem Formulation

Task Plan
Off-The-Shelf Task Planner

Planned Symbolic
' Action T
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Sinit
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Causal Control Basis

* Control Basis: behaviors to execute

0

* Temporal Sapiss decompose symbolic action to controllers
G

* Causal grapinss behaviors involved in multi-objective action
Geo

* Causal control basis:

® = (D,Gp,Go)
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Causal Control Basis:
Comitrollers

* 6D pose controller

¢6Dpose
* 3D position controller

Dpos

e Rotation controller

Cbrot

e Screw controller
@screw

24



Causal Control Basis

e Control basis:

0

* Temporal graphs:
G

e Causal graphs:
Ge

* Causal control basis:

® = (D,Gp,Go)
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Causal Control Basis:
Tenmpesal daaphs

pick—up(obj)

=

open(ee) ';'ﬁnpnse (pre—grasp(obj)) ‘i”ﬁ[}pnsn (grasp(obj)) close(ee) #Eﬂpnse (post—grasp(obj))

insert(obj, target)

_——

®6Dpose (ready(target)) argmax( P(inserted(obj, target)| s, a)) connect(obj, target) open(ee)

screw(obj, target)

i ———

®eDpose (ready(target)) argmax( P(screwed—in(obj, target)| s, a)) connect(obj, target) open(ee)




Causal Control Basis

e Control basis:

* Temporal Grapins

G

e Causal graphs:
Go

e Causal control basis:

® = (D,Gp,Go)
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"'nbpus (pgaalj

at(obj, Fgani]

Causal Control Basis:
Catsad snaohs

grasped(obj) grasped(obj)
¢rut (qgﬂﬂl} ¢5cmw( B) *ﬁp{:s [Pguul} ""nt"mt (qgnnl)
rotated(obj, g go al) screwed(obj, 8) at(obj, p goa 1) rotated(obj, qgoal)

screwed—in(obj, target) inserted(obj, target)
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Causal Control Basis

e Control basis:

0

* Temporal graphs:

e Causal control basis:

® = (0,Gp,Ge)

e Use causal control basis to
estimate the transition function:

P(s'| s,a)
s' e {s* €S| da(s*) =0}

* Execute composition most likely
to achieve composed effects:

argmax P(s’ | s, a)
a

31



Causal Control Basis:
Transition Probability Predictions

S

32

grasped(obj)

Ppos(Pgoal) Prot (qgnnl)

at(obj, P geat) rotated(obj, qgoal)

inserted(obj, target)

a4 = ¢pos < Prot
a = Qrot < ¢pos



Causal Control Basis:
Transition Probability Predictions

e Offline walkouts
a =@ < <@;

| objectives met

P(s' | s,a) = {|0 bad progress

Pa (335 a EZGS(ST) otherwise




Composable Causality Pipeline

High-Level ( ‘ ) Composed
Task Planner Controller Execution
Causal

Control Basis

t

Initial State Goal State

[6] X. Chen, K. Zheng, Z. Zeng, S. Basu, J. Cooney, J. Pavlasek, and O. C. Jenkins, “Manipulation-Oriented Object Perception in Clutter through Affordance Coordinate Frames.”
arXiv preprint arXiv:2101.08202. 2020.
[7]1 Pyperplan STRIPS Planning Library. https://github.com/aibasel/pyperplan 37



IKEA Furniture Assembly Environment

[8]Y. Lee, E. Hu, Z. Yang, A. Yin, and J. Lim. “IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation Tasks.” arXiv preprint arXiv:1911.07246, 2019.
[9] IKEA Furniture Assembly Environment. https://clvrai.github.io/furniture/ 38



Composed Causality Predictions

* Chair and table assembly tasks

* Insert and screw multi-objective connection actions

* 500 walkouts per composition (4000 total walkouts across actions)
* Threshold T=300 controller updates

\ 9 %ﬁé
' &
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Composed Causality Predictions:

Insert Action

Composition | Predicted Transition Probability
a P(s' | s,a)

Ppos < Prot 0.723

Orot < Cbpos 0.711
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Composed Causality Predictions:
Screw Action

Composition Predicted Transition Probability
a P(s' | s,a)
Grot < Pscrew < Ppos 0.937
(bp{}!i <:| (bSCI'C‘N <:] Qbmt 0.936
Qﬁscrew < ﬁbpns < Qbmt 0.929
(f)POS < (f)rot < (ﬁscrew 0.925
Gscrew < Prot <1 Ppos 0.923
(bl'()l' <j (bp{}ﬁ <j (i)SC['E‘W 0.904
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iture Assembly Tasks

Furn

Insert Action

42



Furniture Assembly Tasks
Screw Action

43



Furniture Assembly Tasks

Insert Action Success Rate 0.714

Swivel Chair Assembly Task Success Rate
Average High-Level Task Planning Time (s) 0.028
Average Controller Selection/Instantiation Time (s) 0.205

Average Execution Time (s) 266.241

Screw Action Success Rate

Table Assembly Task Success Rate

Average High-Level Task Planning Time (s) 0.048

Average Controller Selection/Instantiation Time () 0.074

Average Execution Time (s) 492.072
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Future Work

* Avoid joint limits and local minima
* Obstacle avoidance behaviors
* Bimanual manipulation

46



Conclusion

* Causal control basis

* Accurate transition probability predictions
 Successful execution of controller compositions
e Composable Causality for assembly tasks

48
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