Composable Causality in Semantic Robot Programming May 2021 **Emily Sheetz** Advised by Odest Chadwicke Jenkins

Challenges of Assembly Tasks

Barb Makes Things. "Dodecahedrum Frame – Fully Assembled!" YouTube.

Goal-Directed Manipulation Tasks

Semantic Robot Programming (SRP)

Understand goal state through perception

Move beyond atomic actions and motion planning

Goal-Directed Manipulation Tasks

Initial Scene

Goal Scene

Extend SRP to allow robots to reason over and execute multi-objective object affordances in long-horizon tasks

Manipulation Actions in Assembly Tasks

Scoop

Pound

Lift

Move beyond atomic actions to long-horizon tasks

[1] L. Nair, J. Balloch, and S. Chernova. "Tool Macgyvering: Tool Construction Using Geometric Reasoning." IEEE ICRA, 2019.

Executing Multi-Objective Actions

Composable controllers

Learning Comtrodier Compositions

Nullspace composition

Priority of behaviors

8

Bridging the Gap

Contribution: Composable Causality

Autonomously compose controllers for multi-objective affordances without pre-defined priorities

Causal control basis to predict composed effects of multi-objective controllers

Causality

[5] C. Xiong, N. Shukla, W. Xiong, and S.-C. Zhu, "Robot Learning with a Spatial, Temporal, and Causal And-Or Graph." IEEE ICRA, 2016.

Causal Control Basis

- Control Basis: behaviors to execute Φ
- Temporal graphs: decompose symbolic action to controllers G_T
- Causal graphs: behaviors involved in multi-objective action G_{C}
- Causal control basis:

 $\boldsymbol{\Phi} = (\Phi, G_T, G_C)$

Causal Control Basis: Comtrollers

- 6D pose controller $\phi_{6\mathrm{Dpose}}$
- 3D position controller $\phi_{
 m pos}$
- Rotation controller $\phi_{\rm rot}$
- Screw controller $\phi_{
 m screw}$

Causal Control Basis

• Control basis:

 Φ

• Temporal graphs:

$$G_T$$

Causal graphs:

$$G_C$$

• Causal control basis:

$$\mathbf{\Phi} = (\Phi, G_T, G_C)$$

Causal Control Basis

• Control basis:

 Φ

• Temporal graphs

$$G_T$$

Causal graphs:

$$G_C$$

• Causal control basis:

$$\mathbf{\Phi} = (\Phi, G_T, G_C)$$

Causal Control Basis: Causal Graphs

Causal Control Basis

- Control basis: Φ
- Temporal graphs:
 - G_T
- Causal grapping
 - G_C
- Causal control basis:

 $\mathbf{\Phi} = (\Phi, G_T, G_C)$

- Use causal control basis to estimate the transition function: $P(s' \mid s, a)$ $s' \in \{s^* \in S \mid \phi_a(s^*) = 0\}$
- Execute composition most likely to achieve composed effects: $\underset{argmax}{\operatorname{argmax}} P(s' \mid s, a)$

Causal Control Basis: Transition Probability Predictions

 $a = \phi_{\rm rot} \triangleleft \phi_{\rm pos}$

Causal Control Basis: Transition Probability Predictions

• Offline walkouts

$$a = \phi_k \lhd \phi_j \lhd \phi_i$$

Composable Causality Pipeline

[6] X. Chen, K. Zheng, Z. Zeng, S. Basu, J. Cooney, J. Pavlasek, and O. C. Jenkins, "Manipulation-Oriented Object Perception in Clutter through Affordance Coordinate Frames." arXiv preprint arXiv:2101.08202. 2020.

[7] Pyperplan STRIPS Planning Library. https://github.com/aibasel/pyperplan

IKEA Furniture Assembly Environment

[8] Y. Lee, E. Hu, Z. Yang, A. Yin, and J. Lim. "IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation Tasks." arXiv preprint arXiv:1911.07246, 2019.
 [9] IKEA Furniture Assembly Environment. https://clvrai.github.io/furniture/

Composed Causality Predictions

- Chair and table assembly tasks
- Insert and screw multi-objective connection actions
- 500 walkouts per composition (4000 total walkouts across actions)
- Threshold *T*=300 controller updates

Composed Causality Predictions: Insert Action

Composition	Predicted Transition Probability
a	$\hat{P}(s' \mid s, a)$
$\phi_{pos} \lhd \phi_{rot}$	0.723
$\phi_{\rm rot} \lhd \phi_{\rm pos}$	0.711

Composed Causality Predictions: Screw Action

Composition	Predicted Transition Probability
a	$\hat{P}(s' \mid s, a)$
$\phi_{\rm rot} \lhd \phi_{\rm screw} \lhd \phi_{\rm pos}$	0.937
$\phi_{\text{pos}} \lhd \phi_{\text{screw}} \lhd \phi_{\text{rot}}$	0.936
$\phi_{\text{screw}} \lhd \phi_{\text{pos}} \lhd \phi_{\text{rot}}$	0.929
$\phi_{\rm pos} \lhd \phi_{\rm rot} \lhd \phi_{\rm screw}$	0.925
$\phi_{\text{screw}} \lhd \phi_{\text{rot}} \lhd \phi_{\text{pos}}$	0.923
$\phi_{\rm rot} \lhd \phi_{\rm pos} \lhd \phi_{\rm screw}$	0.904

Furniture Assembly Tasks: Insert Action

Furniture Assembly Tasks: Screw Action

Furniture Assembly Tasks

Insert Action Success Rate	0.714
Swivel Chair Assembly Task Success Rate	ĺ
Average High-Level Task Planning Time (s)	0.028
Average Controller Selection/Instantiation Time (s)	0.205
Average Execution Time (s)	266.241
Screw Action Success Rate	0.923
Table Assembly Task Success Rate	ĺ
Average High-Level Task Planning Time (s)	0.048

Average Controller Selection/Instantiation Time (s)

Average Execution Time (s)

45

0.074

492.072

Future Work

- Avoid joint limits and local minima
- Obstacle avoidance behaviors
- Bimanual manipulation

Conclusion

- Causal control basis
- Accurate transition probability predictions
- Successful execution of controller compositions
- Composable Causality for assembly tasks

Acknowledgements

Co-Authors: Xiaotong Chen, Zhen Zeng, Kaizhi Zheng, and Qiuyu Shi

Project Support: Iris Bahar, Steven Sloman, Jasmine Liu, and Semir Tatlidil Jorge Vilchis and Matthew Shannon

This work was supported by a NASA Space Technology Graduate Research Opportunity.