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Abstract—Assembly tasks are challenging for robot manipula-
tion because the robot must reason over the composed effects of
actions and execute multi-objective behaviors. Robots typically
use pre-defined priorities provided by users to determine how
to compose controller behaviors, but we want the robot to
autonomously select these compositions based on their composed
effects within the task. We present Composable Causality in
Semantic Robot Programming to allow robots to reason over the
composed effects of controllers when executing multi-objective
actions and autonomously compose controllers without pre-
defined priorities. Our proposed causal control basis combines
controller behaviors with causal information about how the
behaviors can be used to execute high-level symbolic actions.
The robot uses the causal control basis to predict the transition
probability of achieving the composed effects of a multi-objective
action. The composed causality estimates are used to select which
action to execute within the context of a furniture assembly
task. We evaluate the robot’s transition probability estimates in
different furniture assembly trials in simulation on the Baxter
robot. The robot’s ability to assemble furniture using different
multi-objective connection actions demonstrates the usefulness of
the composed causality estimates from our causal control basis.

I. INTRODUCTION

Assembly tasks are an interesting domain for complex
goal-directed manipulation in both academia and industry
settings. Assembly tasks have been studied in academia in the
context of tool construction [7] and furniture assembly [6],
and assembly in industry settings is a common task for robots
to take on. Robots have difficulty assembling objects because
they have to compose the effects of multiple behaviors and
maintain these composed effects as they move on to the next
step. Semantic Robot Programming (SRP) [17] has emerged
as an intuitive way to declaratively program robots to achieve
a task. We need to extend SRP so robots can compose effects
on objects during task execution and overcome the challenges
of assembly tasks.

Expressing affordances [4] as object-centric controllers [1]
allows robots to compose behaviors together to perform the
complex multi-objective actions involved in assembly tasks.
Object-centric controllers can be used within a control basis
and can be composed through nullspace composition to yield
multi-objective behaviors [12, 11, 13, 5, 14]. However, the
compositions of behaviors are generally determined by a pre-
defined priority provided by the user. To compose behaviors
autonomously, robots need to reason over when controllers can
be enacted, what controllers to compose, and what the effects
of these behaviors will be. Researchers are starting to explore
how robots can autonomously compose controllers [15], and
we need to extend this work to long-horizon assembly tasks.

In this paper, we propose a causal control basis to build on
SRP and allow robots to autonomously compose controllers
to achieve assembly tasks. We take inspiration from work

Fig. 1: Execution of swivel chair (top row) and table (bottom
row) assembly tasks using multi-objective connection actions.

on causality and the analysis of cause and effect relation-
ships [3, 8, 9, 10] and insights into using multiple hierarchical
models for robot manipulation tasks [16]. Using the given
causal control basis, the robot can estimate the transition
probability that a controller composition will achieve the
desired composed effects. During task execution, the robot will
autonomously compose controllers based on their predicted
composed causality and execute the afforded multi-objective
actions to assemble a piece of furniture. We test our causal
control basis in simulation on the Baxter robot in a variety
of furniture assembly tasks, as seen in Figure 1. Our work on
Composable Causality in Semantic Robot Programming
demonstrates that the causal control basis allows the robot to
autonomously compose controllers and achieve assembly tasks
within the SRP paradigm.

II. METHODS

We propose a causal control basis Φ that the robot will use
to autonomously compose controllers without predefined pri-
orities by predicting the transition probabilities (or estimating
the causality) of the controller compositions within furniture
assembly tasks. The causal control basis is given to the robot
and is comprised of:
• the implemented controllers in the control basis Φ;
• the set of composed causal graphs GC , which describe

what controllers are involved in a multi-objective action;
and

• the set of temporal graphs GT that represent the sequence
of controllers that correspond to high-level symbolic
actions.

Our causal control basis is denoted Φ = (Φ, GC , GT ).
For furniture assembly tasks, we define the control basis to
include pose, position, rotation, and screw controllers such
that Φ = {φ6Dpose, φpos, φrot, φscrew}; the causal graphs GC
indicate which of these behaviors are involved in performing



multi-objective insert and screw actions; and the temporal
graphs GT indicate how to decompose high-level pick-up,
insert, and screw actions into sequences of executable
controller behaviors. However, our formulation will work with
an arbitrary control basis appropriate for an arbitrary multi-
objective assembly task. The causal control basis tells the robot
what controllers are involved in each multi-objective action,
but not how to compose these controllers to achieve the desired
composed effects.

To predict the transition probabilities of the controller com-
positions, the causal control basis performs offline walkouts.
Before task execution, the robot uniformly samples initial
states s ∈ S and controller goals s′ ∈ S. The robot simulates
execution of the composed controllers until they converge or
until large time threshold T . The predicted transition probabil-
ity that the action a = φkCφjCφi (the “subject-to” relation C
indicates the priority of behaviors in the composition) achieves
the composed effects s′ based on the offline walkout is:

P̂ (s′ | s, a) =


1 objectives met
0 bad progress
φa(s)−φa(sT )

φa(s)
otherwise

(1)

where sT is the state at time threshold T , φa indicates
the composed cost or objective function values at the given
state, and bad progress means the controllers reached a local
minimum. For a large number of random samples, the average
predicted transition probability indicates how the controller
composition performs across action instances. During task
execution, the robot will query the causal control basis for the
controller composition with the greatest predicted transition
probability and will execute that composition.

III. EXPERIMENTS AND RESULTS

To evaluate our approach to Composable Causality in Se-
mantic Robot Programming and our proposed causal control
basis, we assume that the robot has parsed the goal conditions
of the task as in SRP [17] and that we have affordance-based
perception1 to perceive objects and affordances in the scene.
We use an off-the-shelf task planner2 to construct the task plan.
The causal control basis converts each symbolic action into
a sequence of (possibly composed) controller commands and
instantiates the action based on the current poses of the objects
and their connection sites. The robot executes this sequence
of controllers to assemble furniture. We evaluate the proposed
causal control basis in simulation using the Baxter robot in
the IKEA Furniture Assembly Environment3 [6]. We assume
known object poses during manipulation and grasp poses for
every object part are provided.

For the insert and screw connection actions, the robot
simulated 500 executions of each possible composition. We
used time threshold T = 300 controller updates as the cutoff
for the offline walkouts. The transition probability predictions

1For example, Affordance Coordinate Frames (ACFs) [2].
2Pyperplan STRIPS planning library: https://github.com/aibasel/pyperplan
3https://clvrai.github.io/furniture/

Composition Predicted Transition Probability
a P̂ (s′ | s, a)

φpos C φrot 0.723
φrot C φpos 0.711

TABLE I: Transition probability predictions for insert
action, based on 500 offline walkouts for each composition.

Composition Predicted Transition Probability
a P̂ (s′ | s, a)

φrot C φscrew C φpos 0.937
φpos C φscrew C φrot 0.936
φscrew C φpos C φrot 0.929
φpos C φrot C φscrew 0.925
φscrew C φrot C φpos 0.923
φrot C φpos C φscrew 0.904

TABLE II: Transition probability predictions for screw ac-
tion, based on 500 offline walkouts for each composition.

for the insert and screw actions are shown in Table I and
Table II, respectively.

The controller composition with the maximum transition
probability prediction is used to execute connect actions in a
variety of furniture assembly tasks to test the accuracy of the
composed causality estimates. We tested the insert action
within a swivel chair assembly task and the screw action
within a table assembly task. Across all trials, we compute
the success rate of the multi-objective connection actions and
the success rate of the assembly task. For 10 swivel chair
assembly trials, the insert action success rate was 0.714
and the task success rate was 1. For 6 table assembly trials,
the screw action success rate was 0.923 and the task success
rate was 1. Select images from one of the random swivel chair4

and table5 trials are in Figure 1.
The similarity of the action success rates and the predicted

transition probabilities (Table I and Table II) indicate that
the transition probability predictions accurately capture the
performance of the compositions during task execution. The
task success rates indicate that when the compositions for the
connect actions failed (due to joint limits or collisions between
objects), the robot could retry the action and ultimately achieve
a successful connection.

The robot’s ability to successfully assemble different fur-
niture pieces demonstrates the accuracy of our proposed
causal control basis in predicting the composed effects of
controller behaviors. Our work in Composable Causality in
Semantic Robot Programming demonstrates that reasoning
over a causal control basis allows the robot to autonomously
compose controller behaviors without pre-defined priorities to
achieve assembly tasks and can be applied to goal-directed
manipulation tasks in academic and industry contexts.
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