Composable Causality in Semantic Robot Programming Emily Sheetz, Xiaotong Chen, Zhen Zeng, Kaizhi Zheng, Qiuyu Shi, Odest Chadwicke Jenkins Laboratory for Progress University of Michigan, Ann Arbor, MI, USA

Introduction

Assembly tasks present unique challenges in reasoning over objects, predicting the composed effects of actions, and executing complex behaviors in long-horizon tasks. Object-centric controllers [1] allow robots to achieve low-level motion primitives and can be *composed*—run concurrently with priorities between the behaviors—to perform *multi-objective actions* [2], such as those required in assembly tasks. Priorities between behaviors are generally hard-coded based on user experience, but we want robots to autonomously compose controller behaviors without relying on pre-defined priorities [3]. To autonomously compose controllers in long-horizon assembly tasks, the robot is given hierarchical causal information [4]. Our proposed *causal control basis* extends the intuitive declarative programming of the Semantic Robot Programming (SRP) paradigm [5] and allows the robot to autonomously predict the effects of multi-objective actions and achieve challenging goal-directed manipulation in furniture assembly tasks.

Causal Control Basis $\phi_{\rm rot}(q_{goal})$ $\phi_{\mathrm{pos}}(p_{goal})$ $\phi_{\rm rot}(\boldsymbol{q_{goal}})$ $\phi_{\rm screw}(\theta)$ $b_{pos}(p_{goal})$ $rotated(obj, q_{goal})$ at(obj, $p_{goal})$ at(obj, $p_{goal})$ screwed(obj, θ rotated(obj, **q**_{ao} wed—in(obj, targe nserted(obj, target) Causal graphs for multi-objective *insert* and *screw* actions. $\phi_{6Dpose}(pre-grasp(obj))$ $\phi_{6Dpose}(grasp(obj))$ close(ee) $\phi_{6Dpose}(post-grasp(obj))$

The causal control basis $\Phi = (\Phi, G_C, G_T)$ is given to the robot and is comprised of:

- Controllers in the control basis Φ (pose, position, rotation, and screw controllers)
- Causal graphs G_C showing what controllers are involved in a multi-objective action
- Temporal graphs G_T showing the sequence of controllers that correspond to high-level symbolic actions

The robot will use the *causal control basis* to predict the composed effects of compositions of controllers and execute the composition most likely to achieve its composed effects.

This work was supported by a NASA Space Technology Graduate Research Opportunity.

[1] D. H. Ballard. Task Frames in Robot Manipulation. AIII, vol. 19, pages 16-22, 1984.

[2] R. Platt Jr., A. H. Fagg, and R. A. Grupen. Manipulation Gaits: Sequences of Grasp Control Tasks. IEEE ICRA, vol. 1, pages 801-806, 2004. [3] M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O. Kroemer. Learning to Compose Hierarchical Object-Centric Controllers for Robotic Manipulation. arXiv preprint *arXiv:2011.04627*, 2020.

[4] C. Xiong, N. Shukla, W. Xiong, and S.-C. Zhu. Robot Learning with a Spatial, Temporal, and Causal And-Or Graph. *IEEE ICRA*, pages 2144-2151, 2016.

Temporal graphs for high-level actions.

control basis predicts the The causal composed effects of a controller composition by estimating the transition probability of the composition based on a simulated execution of the action a and averaging across many executions:

$$\hat{P}(s' \mid s, a) = \begin{cases} 1\\ 0\\ \frac{\phi_a(s)}{\phi_a(s)} \end{cases}$$

Multi-Objective Furniture Assembly Tasks

Chair assembly with multi-objective *insert* action. (action success rate 0.714; task success rate 1)

Table assembly with multi-objective screw action. (action success rate 0.923; task success rate 1)

References

2019. https://clvrai.github.io/furniture/ [7] Pyperplan STRIPS Planning Library. https://github.com/aibasel/pyperplan [8] Chair trial videos: https://www.youtube.com/watch?v=4Gpw7uuJju4 [9] Table trial videos: https://www.youtube.com/watch?v=63RFBU4dulo

Composed Causality Predictions

 $\phi_k \triangleleft \phi_i \triangleleft \phi_i$

objectives met bad progress otherwise

Compositio	n Predicted Transition	n Pro
a	$\hat{P}(s' \mid s,$	a)
$\phi_{\rm pos} \lhd \phi_{\rm re}$	0.723	
$\phi_{\rm rot} \lhd \phi_{\rm po}$	0.711	

Composition	Predicted Transition
a	$\hat{P}(s' \mid s, a)$
$\phi_{\rm rot} \triangleleft \phi_{\rm screw} \triangleleft \phi_{\rm pos}$	0.937
$\phi_{\rm pos} \lhd \phi_{\rm screw} \lhd \phi_{\rm rot}$	0.936
$\phi_{\text{screw}} \lhd \phi_{\text{pos}} \lhd \phi_{\text{rot}}$	0.929
$\phi_{\rm pos} \lhd \phi_{\rm rot} \lhd \phi_{\rm screw}$	0.925
$\phi_{\text{screw}} \lhd \phi_{\text{rot}} \lhd \phi_{\text{pos}}$	0.923
$\phi_{\rm rot} \triangleleft \phi_{\rm pos} \triangleleft \phi_{\rm screw}$	0.904

Transition probability predictions for *insert* (top) and screw (bottom) actions, based on 500 walkouts for each composition.

We test our *causal control basis* in the IKEA Furniture Assembly Environment simulator on the Baxter robot. The *causal* control basis uses its predictions to convert the output from an off-the-shelf task planner [7] into a sequence of (composed) controllers. The robot uses multi-objective *insert* and *screw* actions to successfully assemble a chair and a table in several random trials [8, 9]. Our work demonstrates that the proposed causal control basis accurately predicts the composed causality of multi-objective actions, autonomously composes controllers, and can be applied to manipulation in academia and industry.

[5] Z. Zeng, Z. Zhou, Z. Sui, and O. C. Jenkins. Semantic Robot Programming for Goal-Directed Manipulation in Cluttered Scenes. IEEE ICRA, pages 7462-7469, 2018. [6] Y. Lee, E. S. Hu, Z. Yang, A. Yin, and J. J. Lim. IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation Tasks. arXiv preprint arXiv:1911.07246,

