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Abstract—Assembly tasks are challenging for robot manipula-
tion because the robot must reason over the composed effects of
actions and execute multi-objective behaviors. Robots typically
use pre-defined priorities provided by users to determine how
to compose controller behaviors, but we want the robot to
autonomously select these compositions based on their composed
effects within the task. We present Composable Causality in
Semantic Robot Programming to allow robots to reason over the
composed effects of controllers when executing multi-objective
actions and autonomously compose controllers without pre-
defined priorities. Our proposed causal control basis combines
controller behaviors with causal information about how the
behaviors can be used to execute high-level symbolic actions.
The robot uses the causal control basis to predict the transition
probability of achieving the composed effects of a multi-objective
action. The composed causality estimates are used to select which
action to execute within the context of a furniture assembly
task. We evaluate the robot’s transition probability estimates in
different furniture assembly trials in simulation on the Baxter
robot. The robot’s ability to assemble furniture using different
multi-objective connection actions demonstrates the usefulness of
the composed causality estimates from our causal control basis.

I. INTRODUCTION

Assembly tasks present unique challenges in reasoning
over objects and executing complex behaviors in long-horizon
tasks. Assembly tasks have been studied in the context of
tool construction [8] and furniture assembly [6]. Robots have
difficulty assembling objects because they have to compose
the effects of multiple behaviors and maintain these composed
effects as they move on to the next step. We need a flexible
way to program our robots to perform assembly tasks, and
Semantic Robot Programming (SRP) [19] has emerged as an
intuitive way to declaratively program robots to achieve a task.
Within the SRP paradigm, robots can infer goal conditions
from a demonstrated goal scene and reason over available
objects and actions to reach the goal. When SRP was first pre-
sented, the work used off-the-shelf task and motion planners to
execute tasks and instead focused on the perceptual challenges
involved in perceiving the demonstrated goal conditions. Now
that these perceptual challenges have been addressed, we aim
to extend SRP in terms of the types of actions that the robot
can perform, so that we can declaratively program robots to
perform more challenging assembly tasks. Specifically, robots
need to reason about the objects themselves, compose effects
on these objects during task execution, and overcome the
challenges of assembly tasks.

Assembly tasks are challenging because robots need to
determine when to enact controller behaviors, predict the com-
posed effects of actions, and maintain the effects of these be-
haviors throughout task execution. Expressing affordances [4]
as object-centric controllers—which send joint commands
such that the robot achieves low-level motion primitives [1]—

Fig. 1: Execution of swivel chair (top row) and table (bottom
row) assembly tasks using multi-objective connection actions.

allows robots to compose behaviors together to perform more
complex multi-objective actions—which require the robot to
execute multiple controllers concurrently [13, 12, 14, 5, 15].
For example, robust grasping could be formulated as a multi-
objective action that involves positioning an end-effector while
aligning the approach axis of that end-effector with the target
object. Composing multiple behaviors induces a priority be-
tween these behaviors, which means one behavior will likely
be achieved first, and in the worst case may impede the
other controller(s) from converging. The priorities between
controllers—the particular composition of these controllers—
can greatly impact the effect of the multi-objective action.

Compositions of controller behaviors are generally deter-
mined by a pre-defined priority provided by the user. For
example, a user may determine experimentally that prioritizing
positioning over alignment results in the most robust grasp
poses; therefore, the user will hard-code the robot to always
perform multi-objective grasps by composing these behaviors
such that positioning is the highest priority. To extend SRP to
tasks that require multi-objective behaviors, however, we want
to declaratively program robots to autonomously compose
controllers without these pre-defined priorities. Researchers
are starting to explore how robots can autonomously compose
controllers [17], and we need to extend these ideas into long-
horizon assembly tasks. To compose behaviors autonomously,
robots need to reason over pre- and post-conditions of these
behaviors by grounding them in the perceived scene, rather
than in a symbolic manner that is disconnected from the
realities of physical execution. Expressing user insights on
controller compositions to robots remains an open question
because of the complexity of the causal relations the robot
would need to understand, specifically when controllers can
be enacted, what controllers to compose, and what the effects
of these behaviors will be.

We propose that notions of causality provide the insight



needed to address the challenges of predicting the effects
of controller compositions. We take inspiration from work
on causality and the analysis of cause and effect relation-
ships [3, 9, 10, 11] and insights into using multiple hierarchical
graphs to express causal concepts for robot manipulation
tasks [18]. In the case of goal-directed manipulation tasks,
causality can allow robots to reason about the effects of com-
posing controllers on the perceived objects and affordances. If
the robot can predict the transition probability (or composed
causality) of composed controller behaviors, then the robot can
determine the compositions of controllers to execute within
challenging long-horizon assembly tasks without relying on
pre-defined priorities.

In this paper, we propose a causal control basis to build on
SRP and allow robots to autonomously compose controllers
to achieve assembly tasks. Using the given causal control
basis, the robot can estimate the transition probability that
a controller composition will achieve the desired composed
effects. During task execution, the robot will autonomously
compose controller behaviors based on their predicted com-
posed effects and execute the afforded multi-objective actions
to assemble a piece of furniture. We test our causal control
basis in simulation on the Baxter robot in a variety of furniture
assembly tasks, as seen in Figure 1. Our work on Composable
Causality in Semantic Robot Programming demonstrates
that the causal control basis allows the robot to achieve
challenging goal-directed manipulation tasks within the SRP
paradigm.

II. METHODS
A. Problem Formulation

To perform assembly tasks that require multi-objective
behaviors, the robot needs to predict the transition function
of the controllers—the probability that a given composition of
controllers will achieve their composed effects. We assume we
have a control basis Φ of controllers that can be composed us-
ing nullspace projection to achieve multiple objectives. Given
a task goal, the robot constructs a high-level task plan using
an off-the-shelf task planner and decomposes each symbolic
action into a sequence of executable motions. For actions
that require multi-objective behaviors, we want the robot to
autonomously compose the given controllers and execute the
planned symbolic action by reasoning over the causality of
the controllers based on the transition probability estimates.

We formulate this probabilistic planning problem as a
Markov Decision Process (MDP) [7, 16] (S,A, P,C). The
state space S is determined by the robot configuration space
and the poses of the objects in the scene. The action space
A is the set of all possible controllers and compositions
in the given control basis Φ. The controllers that can be
running at any given time are elements of the power set
of the control basis P(Φ). Suppose we have controllers φi
and φj that achieve objectives i and j, respectively. One
possible composition of these controllers is φj C φi, where
the “subject-to” relation C indicates that φi is the controller
with the highest priority. Let Mt ∈ P(Φ) be the set of

controllers running at time t. Since composing controllers
induces an ordering (priority) between them, all possible
compositions of the running controllers Mt are elements of
the symmetric group SMt

, which is the set of permutations
over the elements (controllers) in Mt. Therefore, the action
space for control basis Φ is A = {SMt

| Mt ∈ P(Φ)}. The
transition probability P (s′ | s, a) indicates the probability of
achieving the composed effects s′ of a (composed) controller
a ∈ A when enacted in the current state s. The cost function
Ca(s) is the cost of enacting controller a in state s. We
want the robot to execute the controller a that will achieve
its composed effects by minimizing its objective function φ,
meaning Ca(s) = φa(s).

The action space is determined by the causal control basis,
but the robot is not given any information about the transition
probabilities associated with the (composed) controllers. The
robot needs to estimate the transition probability for each
possible controller composition.

B. Causal Control Basis

We propose a causal control basis Φ that the robot will use
to predict the transition probabilities of actions and determine
which composition of controllers to execute to achieve assem-
bly tasks. The causal control basis is given to the robot and
is comprised of the following components:
• The implemented controllers in the control basis Φ.
• The set of composed causal graphs GC , which describe

what controllers are involved in a multi-objective action.
Causal graphs are comprised of pre-conditions, which
are literals that must be true before an action is taken;
controller behaviors that must be executed concurrently
to achieve a multi-objective action; the effects of the
individual controllers; and the desired composed effects,
which are literals that should be achieved by the compo-
sition of the controllers.

• The set of temporal graphs GT , which represent the
sequence of controllers that correspond to high-level
symbolic actions. The root of the temporal graph is the
high-level symbolic action, and each low-level controller
behavior required to execute this action is a child of the
root, arranged from left-to-right in sequence. The struc-
ture of the temporal graph is inspired by previous work
that uses hierarchical graphs within robot manipulation
tasks [18].

Our causal control basis is denoted Φ = (Φ, GC , GT ). For
the tasks considered in the experiments, we define the control
basis—discussed in more detail in Section III-A1—to include
pose, position, rotation, and screw controllers. However, our
formulation will work with an arbitrary control basis.

The components of the given causal control basis tell the
robot the sequence of controller behaviors associated with
each high-level symbolic action, pre-conditions under which
controller compositions can be enacted, and which controllers
are involved in each multi-objective action. However, the robot
does not know how to compose controllers to achieve the
desired composed effects. For each possible composition a,



Fig. 2: Our pipeline for Composable Causality in SRP.

the robot must use the causal control basis to estimate the
transition probability P (s′ | s, a), which will allow the robot
to predict if the composed controllers will result in successful
assembly of the furniture piece.

To predict the transition probabilities of the controller com-
positions, the causal control basis performs offline walkouts.
Before task execution, the robot uniformly samples initial
states s ∈ S and controller goals s′ ∈ S. Suppose the robot
is predicting the transition probability for arbitrary controller
composition φk C φj C φi (where the “subject-to” relation C
indicates the priority of behaviors in the composition). The
robot simulates execution of the composed controllers until
they converge or until large time threshold T . The predicted
transition probability that the action a = φkCφjCφi achieves
the composed effects s′ based on the offline walkout is:

P̂ (s′ | s, a) =


1 objectives met
0 bad progress
φa(s)−φa(sT )

φa(s)
otherwise

(1)

where sT is the state at time threshold T , φa indicates
the composed cost or objective function values at the given
state, and bad progress means the controllers reached a local
minimum. For a large number of random samples, the average
predicted transition probability indicates how the controller
composition performs across action instances. During task
execution, the robot will query the causal control basis for the
controller composition with the greatest predicted transition
probability and will execute that composition.

III. EXPERIMENTS AND RESULTS

Figure 2 describes the pipeline for assembling furniture
using Composable Causality in Semantic Robot Programming
and the use of our proposed causal control basis. We as-
sume that the robot has parsed the goal conditions from a
demonstrated goal scene of the task as in SRP [19] and that
we have affordance-based perception1 to perceive the objects
and affordances in the scene. These perceived objects and
affordances seed the initial state of an off-the-shelf high-level
task planner2, which constructs the task plan. The causal
control basis converts each action in the high-level task plan
into a sequence of (possibly composed) controller commands

1For example, Affordance Coordinate Frames (ACFs) [2].
2Pyperplan STRIPS planning library: https://github.com/aibasel/pyperplan

Fig. 3: The causal graphs for the multi-objective connect
actions in the control basis for furniture assembly tasks. When
assembling furniture, the robot needs to connect the acted on
object part obj to a target object part target.

Fig. 4: The temporal graphs relating the high-level symbolic
actions reasoned over by the task planner to the low-level
controller behaviors in the control basis.

and instantiates the action based on the current poses of the
objects and their connection sites. The robot executes this
sequence of controllers to achieve the task goal of assembling
furniture.

We evaluate the proposed causal control basis in various
furniture assembly tasks in simulation using the Baxter robot
in the IKEA Furniture Assembly Environment3 [6]. We assume
known object poses during manipulation and grasp poses for
every object part are provided. The connection of two parts
is implemented as welding in the Mujoco simulation, which
checks the position and axis alignment of connecting points.

A. Causal Control Basis for Furniture Assembly

1) Control Basis Implementation: In this work, we define
the control basis Φ for furniture assembly by 6D pose φ6Dpose,
3D position φpos, rotation φrot, and screw φscrew controllers. All
of these controllers are object-centric potential field controllers
based on attractive potential fields that attract the robot and
objects to the controller goal. Our furniture assembly control
basis Φ is the set of these controllers:

Φ = {φ6Dpose, φpos, φrot, φscrew} (2)

2) Causal Graphs: The set of causal graphs GC indicate
the composed effects of the controllers within the multi-
objective insert and screw actions. As shown in Figure 3,
the causal graphs indicate the controllers that are involved
in these connect actions, the pre-conditions of enacting these

3https://clvrai.github.io/furniture/

https://github.com/aibasel/pyperplan
https://clvrai.github.io/furniture/


Composition Predicted Transition Probability
a P̂ (s′ | s, a)

φpos C φrot 0.723
φrot C φpos 0.711

TABLE I: Transition probability predictions for insert
action, based on 500 offline walkouts for each composition.

Composition Predicted Transition Probability
a P̂ (s′ | s, a)

φrot C φscrew C φpos 0.937
φpos C φscrew C φrot 0.936
φscrew C φpos C φrot 0.929
φpos C φrot C φscrew 0.925
φscrew C φrot C φpos 0.923
φrot C φpos C φscrew 0.904

TABLE II: Transition probability predictions for screw ac-
tion, based on 500 offline walkouts for each composition.

compositions, and the intended effects of these compositions.
The robot will use the transition probability predictions from
the causal control basis to determine how to compose these
controllers together.

3) Temporal Graphs: The set of temporal graphs GT
indicate the sequence of controllers that correspond to the
high-level pick-up, insert, and screw actions, as seen
in Figure 4. For multi-objective connection actions insert
or screw, the robot will have to determine what composition
of the controllers (indicated in the corresponding causal graph
in Figure 3) to execute within the sequence (indicated by the
blue boxes in Figure 4) by selecting the composed controller
with the maximum predicted transition probability.

B. Composed Causality Predictions

For the insert and screw connection actions, the robot
simulated 500 executions of each possible composition. We
used time threshold T = 300 controller updates as the cutoff
for the offline walkouts. The predicted transition probability P̂
was computed for each walkout as in Equation 1 and averaged
across walkouts for the same composition to determine the
estimated composed causality of the composition a.

The transition probability predictions for the insert and
screw actions are shown in Table I and Table II, respec-
tively. The composition with the highest probability for the
insert action indicates that positioning the object should
be performed subject to aligning the object with the target,
φpos C φrot. The composition with the highest probability for
the screw action indicates that aligning the object should
be performed subject to screwing and positioning the object,
φrot C φscrew C φpos.

C. Furniture Assembly Task Results

The composition with the maximum transition probability
prediction is used to execute connect actions in a variety of
furniture assembly tasks to test the accuracy of the estimated
composed causality of the controllers. We tested the insert
action within 10 random trials of swivel chair assembly and
tested the screw action within 6 random trials of table

assembly. Across all trials, we compute the success rate of
the multi-objective insert and screw actions as well as
the success rate of the entire assembly task. For 10 swivel
chair assembly trials, the insert action success rate was
0.714 and the task success rate was 1. For 6 table assembly
trials, the screw action success rate was 0.923 and the task
success rate was 1. Select images from one of the random
swivel chair4 and table5 trials are in Figure 1.

The similarity of the action success rates and the predicted
transition probabilities (Table I and Table II) indicate that
the transition probability predictions accurately capture the
performance of the compositions during task execution. The
task success rate for both the swivel chair and table tasks
indicate that when the compositions for the connect actions
did not result in successful connections (due to joint limits or
collisions between objects), the robot could recover by retrying
the action and ultimately achieve a successful connection.

IV. DISCUSSION AND CONCLUSION

The robot’s ability to successfully assemble different furni-
ture pieces demonstrates the accuracy of our proposed causal
control basis in predicting the composed effects of controller
behaviors. The causal control basis effectively extends the
principles of Semantic Robot Programming—that we need
an intuitive way to declaratively program robots to perform
tasks—into more challenging tasks that involve multi-objective
actions. The causal control basis describes the intended results
of the multi-objective actions, but leaves the robot to determine
how to compose the appropriate controller behaviors and
perform the action successfully. By representing important
information in the form of causal and temporal graphs that
users often already use in some form (such as symbolic
descriptions of action pre- and post-conditions or hard-coded
behavior sequences to enact symbolic actions) to describe
tasks to robots, our causal control basis allows users to
intuitively share knowledge about actions such that robots
can autonomously determine how to enact those behaviors in
challenging tasks.

In this work, we proposed a causal control basis for achiev-
ing Composable Causality in Semantic Robot Programming.
Our causal control basis allows the robot to predict the
transition probabilities of controller compositions, thereby esti-
mating the composed causality of multi-objective actions. Our
work in Composable Causality in Semantic Robot Program-
ming demonstrates that reasoning over a causal control basis
provides the robot with the declarative knowledge necessary
to autonomously compose controller behaviors without pre-
defined priorities to achieve furniture assembly tasks.
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