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I. INTRODUCTION

Modern robotics applications are pushing robots further into
environments that are more demanding and challenging, yet
are more likely to be experienced as robots integrate into
everyday operation. For household robots to become widely
used in everyday life, cost of hardware and the trade-off
between computational complexity and accuracy of algorithms
must be considered. We present SodaBot, the inexpensive,
highly customizable, snack delivering household robot. Soda-
Bot is an inverted pendulum robot designed using inexpensive
hardware that can be customized by users to fit their needs. Its
inverted pendulum design introduces challenges with balance
and SLAM implementation so the system can safely and
accurately map and navigate users’ homes. Our approach
transforms sensor measurements from 3D space into the 2D
map plane. This allows the robot to take advantage of 3D
information caused by non-planar and high-speed motion to
make a more accurate but computationally efficient 2D map.

The rest of the paper is outlined as follows: Section II
formulates the problem; Section III motivates the problem and
explains why it is worth investigating; Section IV describes
the physical robot; Section V explores related work; Section
VI details our approach to the problem; Section VII describes
experiments and the results of our approach; Section VIII spec-
ifies how our work could be applied as a practical household
robot; Section IX discusses limitations for our approach and
opportunities for future research; Section X summarizes the
presented work.

II. PROBLEM FORMULATION

In this paper, we implement SLAM on an inverted pendulum
robot with a LIDAR sensor. We target the challenge of cre-
ating and navigating accurate maps of the environment under
disturbances caused by the moving body frame of the robot
due to balancing. Balancing results in LIDAR measurements
outside of the desired 2D map plane. These 3D sensor readings
must be transformed in order to perform SLAM accurately and
create a 2D map of the environment.

III. MOTIVATION

SodaBot, the inverted pendulum robot, is specifically de-
signed using inexpensive and customizable hardware. This is
significant as cost and customizability will be important factors
as household robots become more widely used in everyday

life. Furthermore, household robots will be tasked with oper-
ating quickly and safely for practical use, requiring a trade-
off between algorithmic efficiency and accuracy. Performing
SLAM on an inverted pendulum robot requires that we develop
a computationally efficient transformation so SodaBot can
transform 3D sensor measurements into the 2D map plane
to quickly map the environment. Limiting the problem to 2D
SLAM makes our algorithm more computationally efficient
while taking advantage of 3D information, resulting in a map
that is safe for household operation. This project is interesting
because it explores the trade-offs between inexpensive hard-
ware and resulting algorithmic challenges as well as between
computational efficiency and safety of operation.

IV. SYSTEM DESCRIPTION

Our platform for this project consists of a Plexiglass and
aluminum frame onto which we mount two 12 Volt Polulu
Motors (42 radians per second no-load speed), IMU, LIDAR,
and micro-controllers. The IMU provides information about
the changing body frame angles, which is used to balance
the robot. An RP LIDAR A2 running on a Raspberry Pi 3
Micro-Controller is responsible for providing the necessary
sensor updates for building the map of the environment of
operation. The LIDAR is mounted on a specially designed 3D
printed plate. A Beaglebone Green Micro-Controller with a
custom cape is programmed to control the motors. The two
micro-controllers run Linux OS (Debian). The Lightweight
Communication and Marshalling (LCM) protocol is used for
transferring data between the operating programs. Figure 1
shows the physical system.

V. RELATED WORK

Our high-level objective is implementing a system that
uses the state-of-the-art SLAM algorithms while serving as
a candidate contribution for the SLAM field of research.
Implementing SLAM on an inverted pendulum robot intro-
duces three challenges addressed by previous works: practical
balancing and operation, utilizing 3D information to create
2D maps, and efficiently performing SLAM. Each of these
challenges and key works are discussed below.

A. Applications Requiring Balance

An inverted pendulum robot serves as a scaled down ver-
sion of other robot systems with additional motion caused
by movement of the robot. Adachi et al. introduce Walk’n



Fig. 1: The physical system for the inverted pendulum robot.

Roll, a leg-wheel hybrid mobile robot, that combines wheels’
speed and efficiency and legs’ ability to traverse uneven and
rough terrain [1]. Linear movement of rotor-based Unmanned
Aerial Vehicles (UAVs) results in additional pitch motion [7],
similar to that caused by movement of an inverted pendulum
robot. The University of Michigan’s bipedal Cassie robot must
balance while it moves [6]. Similar humanoid robots must
account for high linear and angular accelerations in 3D when
mapping and navigating environments [8]. Research using
inverted pendulum robots, leg-wheel hybrid mobile robots,
UAVs, bipedal robots, and humanoid robots demonstrates the
desire for robots that move in different ways and through
different types of environments. Accounting for motion caused
by the robot’s hardware is an important challenge as mobile
robots move in more diverse and interesting ways.

B. 2D Mapping from 3D Perception

The greatest challenge of this project is creating a 2D
map based on 3D sensor data. Most SLAM implementations
make the 2D assumption, which states that observing a cross
section of the environment is sufficient to represent the entire
environment, allowing for precise navigation. Work by Wulf et
al. relaxes the 2D assumption by using 3D sensor data to create
a 2D map of a cluttered environment. They present a heuristic
for creating virtual 2D scans from 3D sensor data using
orthogonal projections [11]. Incorporating 3D data built more
accurate maps while maintaining the relative computational

efficiency of 2D SLAM algorithms. The method for creating
virtual 2D scans inspired the method used in this project for
transforming the LIDAR sensor readings in 3D space into the
2D map plane. The details of our approach will be described
in more detail in Section VI-B.

C. SLAM

With the considerable advancement in SLAM over the
past three decades, SLAM problems have branched out into
different combinations of operating conditions. Cadena et al.
state that the 2D SLAM problem is largely solved [4]. Current
research in SLAM investigates dynamic environments, high-
dimensional state spaces, and complex motion and sensor
models. For example, Vidal et al. explore performing visual
SLAM to account for high velocities using high-speed cameras
[10]. The inverted pendulum robot used in this work similarly
must perform SLAM in the presence of complex motion and
sensor models and high velocities caused by balancing the
robot.

We approach the SLAM problem for the inverted pendulum
robot as particle filter robot localization and occupancy grid
mapping, as described in the Probabilistic Robotics textbook
[9]. Existing challenges in SLAM are concerned with com-
putational complexity, specifically the additional complexity
that comes with 3D SLAM [2]. For this reason, we reduce
computational complexity by creating a 2D map while ac-
commodating for the challenge of non-planar and high-speed
motion.

VI. METHODS

In order to implement SLAM on an inverted pendulum
robot and account for the changes in pitch that occur due
to balancing, our method must address the three challenges
described in Section V, specifically: balancing, mapping in
2D from 3D sensor data, and efficiently implementing SLAM.
Our approach to addressing these particular challenges are
described in the following sections.

A. Balancing the Inverted Pendulum Robot

The inverted pendulum robot is balanced using a Propor-
tional Integral Derivative (PID) controller. PID controllers
output control commands to change the state of the robot
based on the current, cumulative past, and expected future
error between the current state and desired state of the robot.

Let xt be the current state of the robot, x̂ be the desired state
of the robot. The current error at timestep t is e(t) = x̂−xt.
The control ut that will correct the current state to match the
desired state is:

ut = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(1)

The gains Kp, Ki, and Kd affect how much the proportional,
integral, and derivative terms, respectively, affect the control
command ut. These coefficients need to be tuned for the
particular system being controlled. By tuning these gains, the
inverted pendulum robot is able to balance.



Changing the nature of the system means that the gains must
be tuned again. The first step of the project was to balance
the inverted pendulum robot. However, mounting the LIDAR
sensor on the robot in order to perform SLAM changed the
system, meaning the PID controller used for balancing the
robot needed to be tuned again.

The intended application for the inverted pendulum robot is
SodaBot, a snack delivering household robot. While carrying
snacks, SodaBot’s weight could change significantly, meaning
the PID controller it uses to balance on its own may not
be effective. To address this, our inverted pendulum robot
system could be extended with a hybrid controller. This
hybrid controller could switch between PID controllers tuned
specifically for snacks of certain weights. This would make our
inverted pendulum robot an effective platform for delivering
snacks in household settings.

B. Transforming 3D Data into 2D

Most 2D SLAM research operates on the 2D assumption,
which states that the cross section of the environment observed
by the sensor provides enough information for the robot
to navigate the environment. This project relaxes the 2D
assumption by incorporating sensor measurements taken in 3D
outside of the 2D map plane.

Balancing the robot will result in changes in the pitch angle
of the robot body frame. The changing pitch will cause the
LIDAR to take measurements in 3D outside of the 2D map
plane. In order to effectively perform 2D SLAM on this 3D
sensor data, we must transform the 3D measurements and
project them into the 2D map plane. The transformation we
use is similar to that presented in [11], as discussed in Section
V-B.

We introduce the following notation:

• θ, the pitch angle induced by robot balancing.
• r, the range measured by the LIDAR sensor, which may

lie outside of the 2D map plane.
• φ, the bearing measured by the LIDAR sensor.
• (x, y, z), the 3D point being observed by LIDAR mea-

surement (r, φ) on some obstacle.
• r∗, the virtual range measurement in the 2D map plane,

which is a transformation of measured range r and pitch
angle θ.

• (x∗, y∗, z∗), the virtual 3D point corresponding to virtual
measurement (r∗, φ) on the obstacle.

Suppose at some time t, the robot has a pitch angle of θ and
the LIDAR observes range and bearing (r, φ) to some obstacle.
We can call the observed point on the obstacle (x, y, z). We
want to find the virtual range r∗ that lies in the 2D map plane
and corresponds to virtual point (x∗, y∗, z∗) on the obstacle.
In order to perform this transformation from measured range r
to virtual range r∗, we perform an orthogonal projection. This
means that to transform measured point (x, y, z) to virtual
point (x∗, y∗, z∗), we can set z∗ = 0.

Since we are working with a range-bearing sensor model,

Fig. 2: Depiction of elliptical projection approach. The top
image shows the derivation of one of the axes of the ellipse.
The bottom image shows the ellipse caused by projecting the
circular LIDAR scan into a 2D plane.

we know that:

x = r cosφ x∗ = r∗ cosφ
y = r sinφ y∗ = r∗ sinφ

(2)

From this foundation, we explored two types of projections,
which we will call the elliptical projection and the plane pro-
jection. Each of these projection approaches will be described
in the following sections.

1) Elliptical Projection: To derive the virtual range r∗ in
the 2D map plane, we can consider the ellipse created by
projecting the 3D circular LIDAR scan into the 2D map plane,
as depicted in Figure 2. Recall the equation of an ellipse:

x2

a2
+
y2

b2
= 1 (3)

The range scans taken at the side of the LIDAR are not
affected by the changing pitch angle of the robot, meaning
the measured range values represent the true range to the
surrounding obstacles. However, the range scans taken at the
front of the robot are affected by the changing pitch angle.
This differentiates the major and minor axes of the ellipse.
Based on the top image in Figure 2, we can see that the axes
of the ellipse are:

a = r cos θ
b = r

(4)



Fig. 3: Depiction of plane projection approach. The top image
shows how the LIDAR plane intersects the map plane. The
bottom image shows the LIDAR plane in isolation.

We can substitute x∗ and y∗ into the equation of an ellipse
based on the computations in Equation 2 and substitute in the
major and minor axes based on Equation 4.

(r∗ cosφ)2

(r cos θ)2
+

(r∗ sinφ)2

r2
= 1 (5)

Solving for virtual range r∗, we obtain our elliptical projection
transformation:

r∗ =
r cos θ√

cos2 φ+ sin2 φ cos2 φ
(6)

2) Plane Projection: An alternative transformation of the
measured range r to virtual range r∗ is derived from a series
of orthogonal projections based on the intersections of the
LIDAR plane and map plane, as depicted in Figure 3. We have
already computed x∗ and y∗ in Equation 2. However, in this
formulation, we see that our computation of x∗ is inaccurate
as it still lies in the LIDAR plane rather than the map plane.
We need to perform an additional transformation on x∗ to put
it into the map plane. Our computed value of y∗ is the same
between the LIDAR and map planes. This gives us our desired
virtual point:

x∗ = r cosφ cos θ
y∗ = r sinφ

(7)

We can then solve for virtual range r∗, giving us our plane
projection transformation:

r∗ =
√
(x∗)2 + (y∗)2

r∗ = r
√

cos2 φ cos2 θ + sin2 φ
(8)

Both the elliptical projection and the plane projection trans-
form measured sensor readings (r, φ) in 3D space into virtual
readings (r∗, φ) in the 2D map plane. Though they formulate
the problem differently, both approaches rely on an orthogonal
projection from the 3D LIDAR scan to the 2D map plane.

C. Performing SLAM

Once the LIDAR measurement data is transformed to the
2D map plane, the map of the environment can be built using a
state-of-the-art SLAM algorithm. This project utilizes particle
filter localization and occupancy grid mapping. Particle filter
localization represents the probability distribution of the robot
location as a set of weighted samples or particles. Occupancy
grid mapping discretizes the map into grid cells and determines
whether each cell is occupied or free.

SLAM algorithms estimate the joint posterior probability
distribution of the current robot pose xt and the map m given
controls ut, observations zt, and initial robot pose x0:

p(xt,m|u0:t, z0:t,x0) (9)

Rather than performing inference on the entire joint prob-
ability distribution, our SLAM algorithm factors the joint
probability distribution in Equation 9 into separate robot and
map components:

p(x0:t,m|u0:t, z0:t,x0)

= p(x0:t|u0:t, z0:t,x0)p(m|x0:t, z0:t)
(10)

Note that Equation 10 differs from Equation 9 in that the
probability distribution considers the entire robot trajectory
x0:t rather than the current robot location xt. This is because
map locations are independent when conditioned on the tra-
jectory [5]. We will address the robot and map components in
Equation 10 separately in the following sections.

1) Particle Filter Localization: To localize the position of
the robot, we use a particle filter [9]. The particle filter rep-
resents the robot component of the factored joint probability
distribution in Equation 10 as sets of N particles and their
weights: {

w
(i)
t ,X

(i)
t

}N

i
(11)

To estimate the robot position, particle filters sample particles,
weigh particles, and resample if necessary. Samples are cho-
sen based on a proposal distribution, which is generally the
motion model. In the case of the inverted pendulum robot, the
motion model depends on odometry commands—based on the
odometry motion model, ut = [δrot1, δtrans, δrot2]

T —and the
forward and backward motion caused by balancing. Weighing
the particles is generally based on the observation model. For
this project, this is a range-bearing sensor model. Resampling



occurs to combat degeneration of samples, but sampling when
it is not necessary leads to sample impoverishment. Using
these steps, particle filters propagate particles to maintain
multiple hypotheses over the location and uncertainty of the
robot.

2) Occupancy Grid Mapping: In this project, the map is
computed using occupancy grid mapping [9]. Occupancy grid
maps factor the map into individual grid cells:

m = {mi} (12)

The grid cells are assumed to be independent. This means
that we can compute the map component of the factored joint
probability distribution in Equation 10:

p(m|x0:t, z0:t) =
∏
i

p(mi|x0:t, z0:t) (13)

Each individual grid cell mi represents the probability that
the particular map location is occupied. For example, if the
occupancy of a map location is known with absolute certainty,
mi = 0 indicates the grid cell is free and mi = 1 indicates
the grid cell is occupied. Multiplying these probabilities to
obtain the total map probability as in Equation 13 leads to
numerical instability, so occupancy grid mapping algorithms
generally utilize log-odds notation. Let mi = p(mi|x0:t, z0:t)
be represented by the quantity lt,i where:

lt,i = log
p(mi|x0:t, z0:t)

1− p(mi|x0:t, z0:t)
(14)

To recover the probability p(mi|x0:t, z0:t), we can compute:

p(mi|x0:t, z0:t) = 1− 1

1 + exp {lt,i}
(15)

Utilizing log-odds notation to represent the probability of
occupancy of a particular grid cell mi leads to numerical
stability in occupancy grid mapping algorithms. Mapping the
occupancy of map locations shows where the robot can safely
navigate its environment.

3) 3D Occupancy Grid Mapping: Though the focus of the
project is to create a 2D map based on 3D data, we can also
create a 3D map. The occupancy grid mapping algorithm is
similar to that described in Section VI-C2, but extended using
3D Bresenham’s algorithm [3] to update the map grid cells
in 3D space. Bresenham’s algorithm finds the grid cells in
between the known start and end points of the LIDAR range.
These grid cells are then updated according to the occupancy
grid mapping algorithm. Through this extension, we can
perform 2D particle filter localization and 3D occupancy grid
mapping simultaneously.

VII. RESULTS

A description of the project and results can be found on the
SodaBot website.1 All code is contained in our public GitHub
repository.2

1https://thesodabotgroup.github.io/Sodabot Team8/
2https://github.com/TheSodabotGroup/Sodabot Team8

Using the methods described in Section VI, the inverted
pendulum robot is able to balance, transform 3D LIDAR scans
into the 2D map plane, and perform SLAM on the transformed
sensor data to localize the robot and create an occupancy grid
map of the environment. We tested our methods to compare
the accuracy of the elliptical and plane projections. We also
explored creating 2D and 3D maps. All of our experiments
were performed by manually controlling the robot through
remote controls. Autonomous exploration was not used as the
focus of our work is to create an accurate maps from 3D sensor
data. The results of the 2D map experiments are discussed in
Section VII-A. The results of the 3D map experiments are
discussed in Section VII-B.

A. 2D SLAM

Figure 4 shows the 2D occupancy grid maps created during
our experiments. We can see that without transforming the
raw sensor data, the resulting map is very noisy. The elliptical
projection improves the resolution of the map significantly,
especially along the walls. The plane projection further im-
proves the resolution of the map. We hypothesize that the
plane projection may be more accurate because it transforms
each range measurement individually whereas the elliptical
projection considers the LIDAR scan in its entirety when trans-
forming the measured range. The results of our experiments
demonstrate that we can use an inverted pendulum robot to
incorporate 3D sensor data into an accurate 2D map of the
environment.

B. 3D SLAM

Figure 5 compares the 2D occupancy grid map created from
transformed sensor data and the corresponding 3D occupancy
grid map created from raw sensor data. We can see that
when viewed from the same angle, the 2D and 3D maps
are very similar. This further demonstrates the accuracy of
the described transformations. However, we can see that
taking advantage of 3D data provides a richer map of the
environment, as seen in the bottom image of Figure 5.

VIII. APPLICATIONS

The proposed application of implementing SLAM accu-
rately on an inverted pendulum robot is SodaBot, the in-
expensive, highly customizable, snack delivering household
robot. Because SodaBot transforms its 3D sensor data to make
accurate 2D maps of the environment, SodaBot can safely
navigate through homes without damaging furniture or injur-
ing occupants. The hardware makes the system inexpensive.
SodaBot is specifically designed with components that can
be easily taken apart and reconfigured to meet users’ needs.
SodaBot’s size makes it perfect for delivering cans of soda or
other lightweight snacks to users while avoiding the clutter in
typical household environments.

The methods described in this project—balancing a robot
designed with inexpensive and customizable parts, transform-
ing 3D sensor data into the 2D map plane, and using state-
of-the-art SLAM algorithms to create occupancy grid maps of



Fig. 4: Comparison of 2D occupancy grid maps with different
projections. The top image shows the map created with no
projection, the middle image shows the map with the elliptical
projection, and the bottom image shows the map with the plane
projection.

Fig. 5: Comparison of 2D map and 3D map using transformed
and raw sensor data, respectively. The top image is the 2D
map, the middle image is the 3D map, and the bottom image
is the same 3D map skewed to show the third dimension. These
experiments were run using the elliptical projection.



the environment—can be deployed on a household robot such
as SodaBot for efficient, accurate, and safe navigation.

IX. FUTURE WORK

Future work would address some of the limitations of this
project and extend the system to more advanced capabilities.
This project evaluates the SLAM implementation on an in-
verted pendulum robot in a controlled laboratory environment.
Since our proposed application is a household environment,
more insight could be obtained by testing the system in
a household environment. Household environments present
additional challenges of clutter, more variety of obstacle size
and shape, and dynamic obstacles such as humans or animals.
Though the results presented here demonstrate the promise
of our proposed methods, more experiments run in household
settings would provide additional insight for evaluation.

Our methods could be improved with a more complicated
sensor data transformation that allows us take more advantage
of the 3D sensor data when creating our maps. Orthogonal
projections enforce assumptions on the environment and may
not accurately capture the variety of objects in a household
environment. Future research could explore more complex data
transformations or explore the computational complexity of
creating 3D maps on inexpensive hardware.

As mentioned in Section VI-A, changing the robot changes
the dynamics of the physical system and requires the PID con-
troller responsible for balance to be retuned. In the proposed
application, using SodaBot to transport snacks could change
the weight of the robot, making its PID controller ineffective.
An extension of this work could be to implement a hybrid
controller that switches between PID controllers depending on
the weight of the snack. The individual PID controllers could
be tuned for snacks of particular weights based on snacks the
system is likely to transport in household settings. Addressing
the changing nature of the system during operation and snack
delivery would extend the system used for this project and
make it a more viable option for household environments.

X. CONCLUSION

We present a SLAM implementation on an inverted pen-
dulum robot that transformed 3D sensor data to create a 2D
map of the environment. The robot is balanced using a PID
controller. The 3D sensor data is transformed into the 2D map
plane using orthogonal projections. The transformed data is
processed using particle filter localization to determine the
robot position and occupancy grid mapping to create a safe
and navigable map of the environment. Our methods work
well and our experiments demonstrate that the plane projection
provides the most accurate transformation of the sensor data.
We also demonstrate that our methods can be extended to
create richer 3D maps of the environment. Our proposed
application for this system is SodaBot, the inexpensive, highly
customizable, snack delivering household robot. Since the
resulting occupancy grid maps are accurate and efficient to
compute, our system would work well in cluttered household
environments where safety is a concern. Further research could

improve the sensor data transformation and practicality of
the system in order to make it a viable option for efficient,
accurate, and safe navigation through household environments.
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