
Affordance Wayfields for Task and Motion Planning

Troy McMahon1, Odest Chadwicke Jenkins1 and Nancy Amato2

Abstract— Affordances provide a natural means for a
robot to describe its agency as actions it can perform on
objects. Further, affordances can enable robots to reason
complicated, multi-step tasks that involve proper use of
a diversity of objects. This paper proposes the concept
of affordance wayfields for representing manipulation af-
fordances as objective functions in configuration space.
Affordance wayfields quantify how well a path, or sequence
of motions, will accomplish an afforded action on an object.
Paths that enact affordances can be located by performing
a randomized form of gradient descent over affordance
wayfields. Incorporating obstacles, or other constraints into
wayfields allows our method to adaptively generate valid
motions for executing afforded actions. We demonstrate
that affordance wayfields can enable robots, such as the
Michigan Progress Fetch mobile manipulator, to solve
complex real-world tasks such as assembling a table, or
loading and unloading objects from a storage chest.

I. INTRODUCTION

Autonomous robots capable of fulfilling high-level

end-user requests could revolutionize many applications

across society. Eldercare, manufacturing, and interplan-

etary exploration are but a few of the domains where

mobility and manipulation could be game-changing.

However, completing objectives in general domains re-

quires robots to perceive scenes in diverse environments,

plan over multiple sets of tasks, and execute low-

level motion plans for each step in a task. For tasks

involving dexterous manipulation, existing methods are

often limited in their ability to generalize, often resulting

in one-off systems restricted to laboratory environments.

These limitations are increasingly critical as we face the

complexity of common human environments filled with

uncertainty—e.g., due to occlusions, physical contact

between objects, etc.

Affordances have been proposed as an interface for

bridging the gap between high level task planners and

low level motion planners. They provide a natural means

of expression for describing and reasoning about the

robot’s environment and the actions available. Affor-

dances can be used as planning operators within existing

task planners (e.g. STRIPS [2]).

To apply affordances to manipulation task planning,

we require the ability to generate low level motion plans

1Department of Electrical Engineering Computer Science, Robotics
Institute, University of Michigan, 2260 Hayward Street, Ann Ar-
bor, MI, 48109-2121 {tamcm,ocj}@umich.edu 2Parasol
Laboratory, Department of Computer Science and Engineer-
ing, Texas A&M University, College Station, TX 77843-3112,
amato@cse.tamu.edu

(i.e., paths, trajectories and ultimately motor controls) to

execute actions that satisfy affordances. Affordance tem-

plates [5] represent an affordance as a set of waypoints

corresponding to a sequence of end-effector poses. Ac-

tions are enacted by iterating through these waypoints

with paths between waypoints being generated by a

motion planning method, such as a PRM [13], RRT [17]

or RRT* [12].

There are a number of limitations to affordance tem-

plates and, more generally, affordances defined as end-

effector waypoints. First, they only allow us to control

the pose of the end-effector at the waypoints. Such

affordance models also provide no guarantees about the

position of the rest of the robot or about the motions

between waypoints. If any of the waypoints are blocked

by obstructions, or outside of the reach of the robot, then

the action fails. And Lastly, end-effector waypoint rep-

resentations are also difficult to set up for complicated

motions that have many steps, and consequently require

many waypoints.

To address these shortcomings, we introduce the con-

cept of affordance wayfields. Similar to the control

basis representation of Grupen et al. [24], wayfields

are a gradient field representation of affordances that

guide generated motions to satisfying configurations.

We express wayfields as a set of critical regions that

the robot must pass through to perform a task. We use

these regions to formulate an objective function mapped

over configuration space based on the workspace poses

of objects associated with the affordance. Affordance

wayfields allow for planning over the entire path of

motion of the robot, whereas affordance templates only

allow for control at waypoints. Motion properties, such

as constraints, can be enforced by giving undesired

configurations a high cost. Extending existing methods,

such as STOMP [11] and CHOMP [34], our affordance

wayfield representation can also account for obstacles

through a linear combination of manipulation actions

with gradient fields for an arbitrary number of obstacles.

Our planner is also advantageous in that it allows us

to specify the desired end of the motion as a region

(either in workspace or in C-space). In contrast, both

STOMP and CHOMP require the user to specify a single

configuration as the goal.

Figure 1 illustrates how affordance wayfields can be

applied to an affordance action of closing a desk drawer.

To close the drawer, the robot needs to move its end-

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

978-1-5386-8094-0/18/$31.00 ©2018 IEEE 2955

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 10,2021 at 20:25:58 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)

Fig. 1: Affordance wayfield illustration: (a) The robot perceives an open drawer and elects to execute a close affordance on it. (b) The robot

needs to move its end-effector horizontally along the yellow arrow. (c) The robot overlays a predefined wayfield associated with closing the

drawer on the environment. (d) It then uses gradient decent planning to generate a physical trajectory for performing the affordance. The path

of the end-effector during this trajectory is shown in green.

effector horizontally along the yellow arrow (Figure

1(b)). The wayfield for this action is defined by the

distance between the robots gripper and the example

path (Figure 1(c)), with each configuration of the arm

being evaluated based on the position of the end-effector

in the field. The wayfield is aligned with the position

and orientation of the drawer in the environment, and a

configuration space trajectory (Figure 1(d)) is generated

using a gradient descent planner.

In the remainder of this paper, we define the concept

of an affordance wayfield and its use in task and motion

planning for manipulation. We present a framework

and implementation for generating robot motion using

affordance wayfields. We demonstrate the efficacy of af-

fordance wayfields for manipulation tasks performed by

a Michigan Progress Fetch mobile manipulation robot.

Our experiments show how affordance wayfields can

solve complex, multi-step problems, such as assembling

a table or loading and unloading objects from a storage

chest.

II. RELATED WORK

Affordances and Affordance Templates: In his semi-

nal work, J.J. Gibson’s psychological “theory of affor-

dances” suggests that organisms perceive their environ-

ment in terms of their ability to interact with it [4].

Applying this theory to robotics, prior work has exam-

ined how to learn affordances for pushing and grasping

objects [3], tool use [31], and navigation [20]. More

generally, various researchers have modeled affordances

probabilistically in terms of the likely effect of robot

behavior [27], as planning operators that can be used

in extended sequences of manipulation tasks [16], or

in collections that can be acquired through intrinsically

motivated reinforcement learning [6], [7]. Defining Task

goals in terms of affordances also serves as a form

of semantic mapping. Affordances provide a suitable

and compact means of describing a robot’s environment

that can be understood by a human operator. While

semantic mapping has traditionally been investigated in

the context of autonomous navigation [18], it provides

enormous potential for manipulation systems that must

recognize and interact with objects in a 3D environ-

ment [26], [23], [8], [32], [33], [21].

Motion Planning for Constrained Systems: Motion

planning is the problem of locating valid paths or

trajectories for execution of an action in an environment.

Sampling based motion planners, such as PRMs [13]

and RRTs [17] have been successfully applied to a wide

array of problems. Asymptotically optional methods

such as PRM* and RRT* [12] converge to shortest paths,

or to minimal paths according to a given cost function.

Manipulation planning introduces constraints into the

motion planning problem, and many affordance actions

specifically require constrained actions. For example,

our benchmark task of opening a drawer requires mo-

tions where the gripper is constrained to the direction of

motion of the drawer. Reachable volumes [19] addresses

2956

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 10,2021 at 20:25:58 UTC from IEEE Xplore. Restrictions apply.

this problem by computing regions of space the robot’s

joints must be in to satisfy the constraints, and then

sampling the joints in these regions. Reachable volumes

have have been applied to a wide variety of problems

such as manipulation and planning for high degree

of freedom problems. But these methods are limited

because their complexity scales with the geometric com-

plexity of constraints, making them unsuited for many of

the highly complex constraints encountered in planning

for manipulation affordances.

Gradient based motion planners, such as STOMP [11]

and CHOMP [34] locate minimal paths within a cost

field representation of an environment. They are able to

generate collision free paths by representing obstacles

using a cost functions such as the one proposed by

Schulman et. al. [28]. These methods are also able

to generate constrained motions by incorporating the

constraints into the cost field. But these methods are

limited in that they require an initial path with predefined

start and end configurations, which makes them unsuited

for problems with multiple potential goals. They also

have the potential to converge to local minimums, which

makes them very sensitive to the initial path. Unlike our

aims for affordance wayfields, STOMP and CHOMP

do not directly consider the case of task and motion

planning in their formulation.

Combined task and motion planning has received

increasing attention in recent robotics research. Srivas-

tava et al. [30] define an interface layer between task

and motion planners for abstraction across geometric

and configuration spaces. Raman and Kress-Gazit [25]

describe an approach for compiling and analyzing task

plans as logical descriptions into robot motion. Simi-

larly, Dantam et al. [1] provide probabilistically com-

plete planning algorithm for satisfiability over logical

operators. Kaelbling and Lozano-Perez [10] perform

hierarchical belief space planning over sets of known

operators. Similar to trajopt [29], affordance wayfields

combines task and motion planning holistically into a

single optimization. The resulting planner is a simple

extension of gradient descent optimization. For such

optimization, affordance wayfields offer a new form

of cost function that incorporates notions of object

affordances.

III. AFFORDANCE WAYFIELDS

We define an affordance wayfield to be a value

function over the space of possible paths through config-

uration space. The value given by this function describes

how well the path will perform the affordance, with

lower values indicating that the path is closer to the

affordance action. Our envisioned use of affordance

wayfields takes a similar approach to that of the Af-

fordance Template Library [5]. At run time, the robot

1
Start

R
0

R

End

Goal
Regiond

n

(a)

1
Start

R
0 n’

d’ R

End

Goal
Region

(b)

Fig. 2: Wayfield Cost Computation: (a) The cost for node n is the

distance, d, between n and the next region, R0. (b) The cost for node

n′ is d′, which is the distance between n′ and R1.

enacts an affordance by transforming the wayfield onto

the existing scene based on the position of the objects

associated with the affordance. The robot then computes

an obstacle field that encodes collision with obstacles,

as well as any other validity constraints. Finally, it

computes a motion plan by applying gradient descent

planning on the wayfield and obstacle field.

A. Wayfield Formulation

There are many potential ways to define the cost func-

tion of an affordance wayfield. We formulate wayfields

as an ordered set of regions of C-space that the path must

travel through. The cost of each node is the distance

between it and the next region that the path travels

through, and the cost of a path to be the sum of these

costs over all nodes (see Figure 2 and Algorithm 1).

This method is beneficial because it can accommodate

complex actions that move through the same region of

space multiple times.

Our formulation is generic with regards to the geo-

metric representation of the regions. We only assume

that the representation provides a means of determining

if a node is in a region and a method for computing the

distance between a node and a region.

For many applications, only the path of the end-

effector is relevant with regards to the affordance. In

these cases, it would be more natural to define the

regions in workspace and the path cost as the distance of

the end-effector to the next region. Similarly, the regions

in C-space can be defined from satisfying regions of end-

effector poses in workspace. Distance between a node

and a region can then be defined as the distance of an

end-effector position and the region in workspace. When

converting workspace regions to C-space we require all

regions to intersect with the robot’s reachable volume. If

there is no intersection then the robot cannot reach the

region and it is not fesiable for the robot to perform

2957

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 10,2021 at 20:25:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 PathCost(R,N)

input:

R: ordered set of wayfield satisfying regions

N : ordered set of path nodes in configuration space

output:

costN : scalar cost of path

begin

r = 0
costN = 0
for n ← 0 . . . |N | do

costn ← distance(n,Rr)

costN ← costN + costn
if n is inside region r then

if r = |R| then

break

r ← r + 1
return costN
end

the required motion. This limitation also exists for

affordance templates in that it is inpossiable to generate

a motion for a template if the robot cannot reach

one of the template’s waypoints. Requiring intersections

between the regions and the robot’s reachable volume

also ensures that the regions in workspace will map to

non-empty regions in C-space

The waypoint representation used by affordance tem-

plates is a special case of our method in which all of the

regions are single points (i.e. the waypoints). As with

affordance templates we presently require affordance

wayfields to be generated by hand. Fortunately, our

framework allows for wayfields to be reused such that

it is generated only once for a particular affordance.

B. Obstacle Fields

To accommodate obstacles, we generate a potential

field [14] to compute obstacle cost. Based on the work

of Schulman et al. [9], this field defines the obstacle

cost ObstacleCost(n) of a configuration n to be the

translational distance required to move the robot to a free

configuration. The resulting path will minimize collision

with obstacles while adhering as closely as possible to

the motion requirements of the affordance. We define

the obstacle cost of a path N to be the sum of this cost

over all nodes along the path:

ObstacleCost(N) =
∑

n∈N

ObstacleCost(n) (1)

C. Transitional Cost

The third factor in our model for wayfield planning is

the cost of transition between the nodes along the path.

For consistency, we use the same cost function as was

Algorithm 2 GradientDescentPlanner(N)

input:

N : ordered set of path nodes in configuration space

begin

while ¬StoppingConditions(N) do

for all n ∈ N do

n =GradientDescentUpdateNode(n)

return N

end

used by the CHOMP planner [34] as the sum of the

transition costs of all adjacent nodes along the path.

D. Wayfield Matching

To do motion planning with wayfields, we need to

match the wayfield to the physical position of the objects

the affordance is acting on. For example, in Figure 1

we need to match the ”close-drawer” wayfield to the

position and orientation of the drawer. The waypoint

architecture presented in [5] provides the user with an

interface for the user to manually specify the position

of these objects, with the waypoints being mapped to

the real world based on these positions. We provide

an equivalent interface for specifying object positions

and map the wayfields to the real world based on these

positions. There is ongoing work to automate the process

of mapping waypoints and wayfields; however such

methods are outside of the scope of this paper.

E. Gradient Descent Planning for Affordance Wayfields

Gradient descent planners (Algorithm 2) start with an

initial path that is represented by a sequence of nodes

in C-space. Normally, this initial path is a straight line

between start and end configurations. Gradient descent

is performed on a cost function formed by three terms:

1) the cost given by the wayfield, 2) the cost given by

the obstacle field, and 3) the cost of transition between

nodes. Our method is different from previous gradient

fields in that one of the values, the wayfield cost, is

evaluated over the entire path. Previous gradient field

formulations primarily use costs that depend only on

the position of a node and its predecessor/successor on

the path. This assumption makes computing an exact

gradient nontrivial. We therefore use an approximate

gradient descent (Algorithm 3) in place of an exact

method. This method steps a node, n, by randomly

generating samples that are near n, then moving n to

the position of the sample which gives the lowest total

path cost.

One issue we need to consider is the weighting

between the three costs. These weightings are denoted as

wP , wO and wT in Algorithm 3. We used an increasing

weight factor that initially weights the wayfield cost

2958

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 10,2021 at 20:25:58 UTC from IEEE Xplore. Restrictions apply.

(a) Initial State (b) Grasping Position (c) Grasp Leg

(d) Lift (e) Position Leg (f) Insert (g) Screw

Fig. 3: Table leg grasp affordance (a,b,c), positioning affordance (d,e,f) and screwing affordance (g)

highly, then gradually increases the weighting of the

obstacle and transition costs. We could easily adjust

this process based on priorities that are specific to our

application.

Our algorithm terminates when one of the following

conditions is met: 1) The path goes from having a

node in all regions to omitting a region, or 2) The

number of iterations reaches some maximum threshold.

The first condition specifies that our method terminates

when it reaches an iteration where the path goes from

having a node in all regions to omitting a region. If

this condition is met we stop and return the previous

iteration, which includes nodes in all of the regions.

Conceptually, this gives us a path that goes through

all of the regions while adhering to the obstacle and

transition constraints as closely as possible. The second

condition guarantees termination by stopping after a

certain number of iterations. We use a threshold of 100

iterations in our current implementation.

As with other state of the art gradient descent mo-

tion planners, ours may converge to a locally optimal

solution–the problem of local minimums is inherent to

gradient descent planners. Fortunately, in robotic path

planning globally optimal solutions are rarely required

and a locally optimal solution that accomplishes the

required motion planning task is considered adequate.

In practice, we found that our planner was able to con-

sistently produce solutions that successfully accomplish

the desired actions.

IV. RESULTS

We have implemented a prototype manipulation sys-

tem demonstrating planning by affordance wayfields.

This system was used with a Michigan Progress Fetch

robot for scenarios involving tool use, such as table

assembly and loading a toolbox. The results presented

show the efficacy of affordance wayfields for task and

motion planning for a variety of actions beyond pick-

and-place. Visualizations of our results are included in

this paper’s video attachment.

2959

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 10,2021 at 20:25:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 ApproximateUpdateNode(N ,n)

input:

N : ordered set of path nodes in configuration space

n: node to be update

const:

D: number of degrees of freedom in C-space

δ: set of scaling factors over degrees of freedom

begin

costN = wP ∗PathCost(N)+wO∗ObstacleCost(N)

+wT ∗TransitionCost(N)

for i← 1 . . . |N | do

N ′ ← N

n′

i ← n

for j ← 1 . . . D do

n′

i ← n′

i + δj*rand(-1,1)

replace n with n′

i in N ′

costN ′ = wP ∗PathCost(N ′)+wO∗ObstacleCost(N ′)

+wT ∗TransitionCost(N ′)

if costN ′ < costN then

n← n′

N ← N ′

costN ← costN ′

return N

end

A. Table Assembly

We first apply affordance wayfields to a table as-

sembly task (Figure 3) where the robot needs to pick

up each of the table’s legs and screw them into the

bottom of a tabletop. This problem is analogous to those

studied in [22] and [15]. The first wayfield enacts a

grasp affordance on the table leg, as pictured in Figures

3(a)-3(c). In order to solve this problem, our grasp

planner must be aware of how the afforded action could

be executed in the context of a sequential task. For

example, it is only possible screw the leg into the

base if the robot is grasping it by the end without the

screw as shown in Figures 3(c). We define a grasping

wayfield that attracts the robot’s grippers to the end of

the table leg, then closes the grippers. The state of the art

affordance templates [5] cannot perform this affordance

because they have no mechanism for restricting the

robot’s orientation. This makes it impossible to require

that the robot’s hand be aligned with the table leg in

order to achieve the required grasp.

We next define a positioning affordance wayfield

which positions the table leg over its screw hole, as

shown in Figures 3(d)-3(f). This affordance attracts the

robots wrist joint to a region directly above the screw

hole and the end of the gripper to a position directly

below the wrist so that the endpoint of the table leg is

just above the position of the screw hole (Figure 3(e)).

Again, affordance templates are not able to perform this

(a) Tool Chest

(b) Position (c) Drive Screw

Fig. 4: Affordances for objects in the drawers.

affordance because they provide no means of restricting

the direction of the leg/grasper to be aligned with the

screw hole.

We then define a screw affordance wayfield which

screws the leg into the tabletop (Figure 3(g)). This way-

field consists of circular motion about the approach axis

of the robot’s wrist while constraining the other joints to

be fixed. As the gripper rotates, the leg is screwed into

the base. The affordance template waypoint architecture

cannot accommodate a screw affordance because they

have no mechanism for specifying a motion that rotates

the robot’s gripper while constraining the position of the

rest of the robot. Performing the grasping, positioning

and screwing affordance in sequence will screw one

of the table legs into the tabletop. We can therefore

assemble the table by applying these affordances to each

of the table legs.

B. Toolbox

We next explore a tool chest environment (Figures

4 and 5). This environment consists of a tool chest

with multiple drawers that store tools the robot needs

to manipulate (Figure 4(a)). As an example, consider

a scenario where the robot is tasked with fastening

in a screw. To accomplish this task the robot needs

2960

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 10,2021 at 20:25:58 UTC from IEEE Xplore. Restrictions apply.

(a) Initial State (b) Grab Drawer

(c) Open Drawer (d) Pick Screw Driver

(e) Place Screw Driver (f) Pick Hammer

(g) Lift Hammer (h) Place Hammer

(i) Close Drawer (j) Goal State

Fig. 5: Tool chest environment: The robot performs an open drawer

affordance (b,c). It then performs a pick affordance (d) and a place

affordance (e) to remove the screw driver from the drawer. Next

it performs a pick affordance (e,f) and a place affordance (g,h) to

put the hammer into the drawer. Finally, it performs a close drawer

affordance(i,j).

perform an open-drawer affordance on the drawer in

which the screwdriver is located. It must then perform

a pick affordance on the screw driver followed by a

positioning and screwing affordance (Figures 4(b) and

4(c)). Finally, it needs to put the screw driver back in

the drawer by performing a place affordance followed

by a close-drawer affordance.

To accommodate such scenarios, we define a drawer-

open affordance and a drawer-close affordance that can

be performed on the drawer of the chest. We also

define a pick affordance and a place affordance for the

objects in the drawer, as well as a set of object specific

affordances such a drive-screw affordance for the screw

driver.

The drawer-open affordance consists of a wayfield

that attracts the robot’s grasper towards the drawer’s

handle (Figure 5(b)) and an open-drawer affordance that

moves the gripper outward in order to open the drawer

(Figure 5(c)). Because the wayfields are centered on

the location of the affordance objects (in this case the

drawer) we can use these wayfields to open any of the

chest’s drawers.

The drawer-close affordance consists of a wayfield

that attracts the robot’s gripper towards the open drawer

(Figure 5(i)) and a second wayfield that moves the

gripper towards the chest in order to close the drawer

(Figure 5(j)). Unlike the open affordance, the robot

does not need to close its grippers before pushing the

drawer shut. The existing affordance template architec-

ture only allows the position of the robot to be specified

at waypoints. It cannot accommodate open-drawer of

close-drawer affordances because it does not provide

a mechanism for constraining the robot’s motion to be

along the axis of the drawer.

The pick affordance (e.g. Figure 5(f)) consists of

a wayfield that attracts the end-effector of the robot

towards specified grasping positions on the object. Once

the robot reaches these positions it closes its gripper,

grasping the object. The place affordance consists of

an attraction region over the entire inside of the open

drawer. This wayfield attracts the robot’s grasper to

the inside of the drawer where it opens its grippers

and release the object. This wayfield demonstrates our

method’s ability to accommodate regions as goals.

We are also able to define wayfield affordances that

are specific for the different objects in the drawer. As

an example, we define a drive screw affordance that

is associated with the screw driver. This affordance

consists of a wayfield that attracts the robot’s end-

effector towards the position and orientation of a screw

followed by a wayfield defining a circular motion similar

to that of the table leg screw affordance.

V. CONCLUSION

This paper presents a novel framework for motion

planning with manipulation affordances. It proposes the

concept of wayfields which provide template motions

for affordances. We show how affordance wayfields can

be combined with obstacle fields in order to produce

collision free paths. We propose a randomized gradient

descent planner to generate paths from affordance way-

fields. This planner is advantageous over other gradient

descent methods in that it can handle complex paths that

traverse the same region of space multiple times. Our

experiments demonstrate that affordance wayfields can

solve problems such as assembling a table or loading

tools into a tool-chest.

2961

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 10,2021 at 20:25:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Neil Dantam, Zachary K. Kingston, Swarat Chaudhuri, and
Lydia E. Kavraki. Incremental task and motion planning: A
constraint-based approach. In Robotics: Science and Systems,
2016.

[2] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to
the application of theorem proving to problem solving. Artificial

Intelligence, 2(3–4):189–208, 1971.
[3] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini.

Learning about objects through action: Initial steps towards arti-
ficial cognition. In IEEE International Conference on Robotics

and Automation, Taipei, May 2003.
[4] J. J. Gibson. The theory of affordances. In Perceiving, acting

and knowing: toward an ecological psychology, pages 67–82,
Hillsdale, NJ, 1977. Lawrence Erlbaum Associates Publishers.

[5] S. Hart, P. Dinh, and K. Hambuchen. The Affordance Template
ROS Package for Robot Task Programming. In Proceedings of

the IEEE International Conference on Robotics and Automation

(ICRA), 2015.
[6] S. Hart and R. Grupen. Intrinsically motivated affordance

learning. In 2009 Workshop on Approaches to Sensorimotor

Learning on Humanoids at the IEEE Conference on Robots and

Automation (ICRA), Kobe, Japan, 2009.
[7] S. Hart and R. Grupen. Intrinsically motivated affordance

discovery and modeling. In Gianluca Baldassarre and Marco
Mirolli, editors, Intrinsically Motivated Learning in Natural and

Artificial Systems, pages 279–300. Springer Berlin Heidelberg,
2013.

[8] Evan Herbst, Peter Henry, and Dieter Fox. Toward online 3-
d object segmentation and mapping. In IEEE International

Conference on Robotics and Automation (ICRA), 2014.
[9] Jonathan Ho Alex Lee Ibrahim Awwal Henry Bradlow Jia

Pan Sachin Patil Ken Goldberg Pieter Abbeel John Schulman,
Yan Duan. Motion planning with sequential convex optimization
and convex collision checking. The International Journal of

Robotics Research, 33:1251–1270, 2014.
[10] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task

and motion planning in belief space. The International Journal

of Robotics Research, 32(9-10):1194–1227, 2013.
[11] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter

Pastor, and Stefan Schaal. Stomp: Stochastic trajectory opti-
mization for motion planning. In International Conference on

Robotics and Automation, Shanghai, China, 05/2011 2011.
[12] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms

for optimal motion planning. CoRR, abs/1105.1186, 2011.
[13] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars.

Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and Au-

tomation, 12(4):566–580, Aug 1996.
[14] Oussama Khatib. Real-time obstacle avoidance for manipulators

and mobile robots. The International Journal of Robotics

Research, 5(1):90–98, 1986.
[15] Ross A. Knepper, Todd Layton, John Romanishin, and Daniela

Rus. Ikeabot: An autonomous multi-robot coordinated furniture
assembly system. 2013 IEEE International Conference on

Robotics and Automation, pages 855–862, 2013.
[16] N. Krüger, J. Piater, F. Wörgötter, C. Geib, R. Petrick, M. Steed-

man, A. Ude, T. Asfour, D. Kraft, D. Omrcen, B. Hommel,
A. Agostino, D. Kragic, J. Eklundh, V. Kruger, and R. Dillmann.
A formal definition of object action complexes and examples
at different levels of the process hierarchy. http://www.paco-
plus.org, 2009.

[17] J. J. Kuffner and S. M. LaValle. RRT-Connect: An efficient
approach to single-query path planning. In Proceedings of

the IEEE International Conference on Robotics and Automation

(ICRA), pages 995–1001, San Francisco, California, April 2000.

[18] B. Kuipers. The Spatial Semantic Hierarchy. Artificial Intelli-

gence, 119:191–233, 2000.

[19] T. McMahon, S. Thomas, and N. M. Amato. Sampling-based
motion planning with reachable volumes: Theoretical founda-
tions, May 2014.

[20] J. Modayil and B. Kuipers. Autonomous development of a
grounded object ontology by a learning robot. In Proceedings of

the Twenty-Second Conference on Artificial Intelligence (AAAI-

07), 2007.

[21] Venkatraman Narayanan and Maxim Likhachev. Perch: Per-
ception via search for multi-object recognition and localization.
In IEEE International Conference on Robotics and Automation

(ICRA), May 2016.

[22] Scott Niekum, Sachin Chitta, Andrew G. Barto, Bhaskara Marthi,
and Sarah Osentoski. Incremental semantically grounded learn-
ing from demonstration. In Robotics: Science and Systems, 2013.

[23] Richard Alan Peters II, Kimberly A. Hambuchen, and Robert E.
Bodenheimer. The sensory ego-sphere: a mediating interface
between sensors and cognition. Autonomous Robots, 26(1):1–
19, 2009.

[24] Robert Platt Jr, Andrew H Fagg, and Roderic A Grupen. Null-
space grasp control: theory and experiments. IEEE Transactions

on Robotics, 26(2):282–295, 2010.

[25] Vasumathi Raman and Hadas Kress-Gazit. Towards minimal
explanations of unsynthesizability for high-level robot behaviors,
11 2013.

[26] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai
Dolha, and Michael Beetz. Towards 3d point cloud based
object maps for household environments. Robot. Auton. Syst.,
56(11):927–941, November 2008.

[27] E. Şahin, M. Çakmak, M.R. Doǧar, E. Uǧur, and G. Üçoluk. To
afford of not to afford: A formalization of affordances toward
affordance-based robot control. Adaptive Behavior, 4(15):447–
472, 2007.

[28] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim
Awwal, Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg,
and Pieter Abbeel. Motion planning with sequential convex
optimization and convex collision checking. Int. J. Rob. Res.,
33(9):1251–1270, August 2014.

[29] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, and Pieter Abbeel. Finding locally optimal, collision-
free trajectories with sequential convex optimization.

[30] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and
P. Abbeel. Combined task and motion planning through an exten-
sible planner-independent interface layer. In IEEE International

Conference on Robotics and Automation (ICRA), 2014.

[31] A. Stoytchev. Toward learning the binding affordances of
objects: A behavior-grounded approach. In Proceedings of the

AAAI Spring Symposium on Developmental Robotics, Stanford
University, 2005.

[32] Zhiqiang Sui, Lingzhu Xiang, Odest C. Jenkins, and Karthik
Desingh. Goal-directed robot manipulation through axiomatic
scene estimation. International Journal of Robotics Research,
36(1):86–104, 1 2017.

[33] Zhiqiang Sui, Zheming Zhou, Zhen Zeng, and Odest Chadwicke
Jenkins. Sum: Sequential scene understanding and manipulation.
IROS, 2017.

[34] Matthew Zucker, Nathan D. Ratliff, Anca D. Dragan, Mihail
Pivtoraiko, Matthew Klingensmith, Christopher M. Dellin, J. An-
drew Bagnell, and Siddhartha S. Srinivasa. Chomp: Covariant
hamiltonian optimization for motion planning. I. J. Robotics

Res., 32:1164–1193, 2013.

2962

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 10,2021 at 20:25:58 UTC from IEEE Xplore. Restrictions apply.

