
Robotics and Autonomous Systems 62 (2014) 142–150
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Flight path planning for unmanned aerial vehicles with
landmark-based visual navigation
Luitpold Babel ∗
Institut für Mathematik und Informatik, Fakultät Betriebswirtschaft, Universität der Bundeswehr München, D-85579 Neubiberg, Germany

h i g h l i g h t s

• The flight performance and the navigational capabilities are considered.
• The airspace is discretized by a network depending on the UAV characteristics.
• The time-consuming tasks are performed in a preprocessing step.
• It is demonstrated that a flight path is calculated within few seconds.

a r t i c l e i n f o

Article history:
Received 6 March 2013
Received in revised form
31 October 2013
Accepted 22 November 2013
Available online 28 November 2013

Keywords:
Route planning
Kinodynamic planning
Unmanned aerial vehicles
Landmark-based visual navigation
Shortest paths in networks

a b s t r a c t

In this paper we present an algorithm to determine a shortest trajectory of a fixed-wing UAV in scenarios
with no-fly areas. The innovative feature is that not only the kinematic and dynamic properties, but also
the navigational capabilities of the air vehicle are taken into account. We consider a UAV with landmark-
based visual navigation, a technique which can cope with long-term GPS outages. A navigation update
is obtained by matching onboard images of selected landmarks with internally stored geo-referenced
images. To achieve regular updates, a set of landmarks must be identified which are passed by the air
vehicle in a proper sequence and with appropriate overflight directions.

The algorithm is based on a discretization of the airspace by a specific network. Each path in the
network corresponds to a trajectory which avoids the no-fly areas and respects the flight performance of
the air vehicle. Full functionality of the navigation can be ensured by dynamically adapting the network
to the environmental conditions. A shortest trajectory is then obtained by the application of standard
network algorithms.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Unmanned Aerial Vehicles (UAVs) are increasingly deployed in
civilian andmilitary domains. Civil applications include search and
rescue, border interdiction, traffic monitoring, law enforcement,
disaster and emergency management, wild fire suppression,
communications relay, andmany others. In themilitary field, UAVs
play a key role within the concept of information dominance. They
are widely used for intelligence, reconnaissance and surveillance
missions. A survey of UAV applications is given by Sarris [1].

AUAVmission planning system is intended to assist an operator
to plan and manage missions which satisfy the operational
requirements while taking into account the limitations of the air
vehicle, airspace control regulations, rules of engagement, etc. The
main component of an automated mission planning system is the
flight path algorithm. The task is to find an optimal or near-optimal

∗ Tel.: +49 8960043267; fax: +49 8960043795.
E-mail address: luitpold.babel@unibw.de.

0921-8890/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.robot.2013.11.004
route from a start point to a destination point in a complex and
challenging scenario. This problem is further complicated by the
need of a fast planning. Modern mission planning systems must
support quick reactions to changing operational requirements,
tactical considerations, or environmental conditions.

An advanced flight path algorithm should consider differential
constraints which arise from the kinematic and the dynamic
behavior of the air vehicle. Limitations of the velocity are often
called kinematic constraints in order to distinguish them from
dynamic constraints which refer to the acceleration capabilities.
For an air vehicle, the kinematic constraints (first order derivative
of motion) are usually expressed by its minimum and maximum
velocity. The dynamic constraints (second order derivatives)
reflect that the air vehicle is not able to instantaneously change its
velocity or perform sharp turns. Motion planning problems with
velocity and acceleration bounds are also known as kinodynamic
problems (see Donald et al. [2]). Planning under differential
constraints is intensively discussed in the textbook of LaValle [3].

Equally important, however, is to involve the navigational ca-
pabilities of the UAV. A successful mission of an autonomous air
vehicle strongly depends on an accurate and reliable navigation.

http://dx.doi.org/10.1016/j.robot.2013.11.004
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2013.11.004&domain=pdf
mailto:luitpold.babel@unibw.de
http://dx.doi.org/10.1016/j.robot.2013.11.004

L. Babel / Robotics and Autonomous Systems 62 (2014) 142–150 143
Navigation data (position, velocity, and attitude) are needed for
guidance and control. They are usually obtained by inertial nav-
igation systems which are based on measurements of the vehi-
cle’s angular velocity and acceleration. In order to correct the
inevitable drift, the systems are aided by external non-inertial nav-
igation data. These data are often provided by a satellite-based
system such as the Global Positioning System (GPS). Since GPS is
not always available, visual (image-based) navigation is establish-
ing more and more as a cheap and robust additional measurement
method. In a landmark-based approach, an onboard camera takes
images of selected landmarks during flight. By matching these im-
ages with geo-referenced landmark data, the position and attitude
of the air vehicle relative to the landmark can be estimated.

This paper investigates the problem of finding a flight path of
minimal length in the horizontal plane, from a start point with re-
lease velocity vector to a destination point with approach velocity
vector. The flight path must avoid no-fly zones (densely populated
areas, threat regions, obstacles due to topography, etc.) and must
consider the performance of the air vehicle. This means that the
trajectory should be sufficiently smooth (obeying the kinematic
and dynamic constraints of the air vehicle) and should ensure full
functionality of the navigation system. The latter includes the iden-
tification of a set of suitable landmarks which have to be passed by
the air vehicle in a proper sequence. The distances between consec-
utive landmarks and the overflight directions must be controlled
in order to guarantee regular navigation updates. The problem is
aggravated by the fact that the quality of navigation updates is
strongly depending on (rapidly changing) weather conditions.

Finding a flight path which avoids no-fly zones is strongly
related to the problem of finding a collision-free path of a robot
in an environment with obstacles. Different techniques have been
used to solve that problem, among them are mixed integer linear
programs, the potential field method, cell decomposition, the
roadmap method, the mass–spring–damper method, and several
network-based approaches with discretizations of the space by
visibility graphs, Voronoi diagrams or regular grids.We refer to the
reviews of Latombe [4] and LaValle [3].

In adapting these methods to the flight path problem, some
authors completely neglect the maneuverability of the air vehicle.
In a number of papers, the flight performance is indeed considered,
but in a rather simplified form. For instance, the network-based
methods of Carlyle [5], Rippel [6] and Zabarankin [7] generate a
polygonal path from a regular grid discretization of the airspace.
The flight performance is restricted to the implementation of turn
radius constraints. They allow consecutive edges on a path only
if these edges include a sufficiently small angle. Other authors
perform a path smoothing after having found a collision-free path
in a first step. For instance, Bortoff [8] determines a shortest path
in a network based on Voronoi polygons and achieves a smoothing
of the path by a springs and masses approach. Judd and McLain [9]
use a series of cubic splines to smooth the straight-line segments.

Newer approaches try to solve the flight path problem while,
at the same time, accounting for no-fly zones and differential
constraints. These include sampling-based methods based on
rapidly exploring random trees,model predictive controlmethods,
and mathematical programming methods which treat the route
planning problem as a numerical optimization problem. A review
is given by Goerzen et al. [10]. On the other hand, we are not aware
of any research that also considers the navigational capabilities of
the air vehicle.

In this paper we introduce a flight path algorithm which con-
siders no-fly zones, differential and navigational constraints for
a fixed-wing UAV equipped with land-mark-based visual naviga-
tion. The algorithm is based on a discretization of the airspace
by a specific network. The edges of the network represent short-
est obstacle-avoiding trajectories between the landmarks. Each of
them respects the differential constraints which are given in the
formof velocity and acceleration bounds. The generation of the tra-
jectories adopts an idea from Babel [11]. By deleting certain edges,
we obtain a subnetwork where the trajectories additionally com-
ply with the navigational constraints. While the basic network is
static, the subnetwork can be considered as dynamic in the sense
that it depends on the environmental conditions of the current
mission. The approach allows the application of standard network
methods to find a shortest path. In order to realize a quick planning
we split the algorithm into a preprocessing and an online plan-
ning phase. The preprocessing phase gathers the time-consuming
preparatory work, thus allowing an online planning within a few
seconds.

Section 2 briefly describes the concept of landmark-based
visual navigation. Section 3 outlines how to find a shortest flight
path with differential constraints in a scenario with no-fly zones.
Section 4 contains the main contribution of the paper, the route
planning algorithm for air vehicles with navigational constraints.
Section 5 continues with implementation details. Computational
results for different scenarios are discussed in Section 6. We
conclude with final remarks in Section 7.

2. Landmark-based navigation

Today, most air vehicles are equipped with an inertial naviga-
tion system. The main component of an inertial navigation system
is the inertial measurement unit (IMU), an electronic device which
usually consists of three accelerometers and three gyroscopes.
Measurements of the current rate of acceleration and changes in
angular velocities (of pitch, roll and yaw) are integrated over time,
thus providing an estimation of the velocity, orientation and posi-
tion of the vehicle.

A major drawback of inertial navigation systems is that they
suffer from integration drift. Small measurement errors of acceler-
ation and angular velocity are integrated into increasing errors in
velocity which are accumulated into still greater errors in position.
This provides an ever-increasing difference between the estimated
position of the air vehicle and its true position (see e.g. Britting [12],
Titterton and Weston [13]).

For that reason the position must be periodically corrected by
an input from some other source. This can be accomplished by a
satellite-based system (such as the Global Positioning SystemGPS)
or some other type of navigation system. An aided system fuses the
inertial navigation datawith the GPS data (or data from some other
source), hence bounding the error and providing a higher degree
of accuracy than is possible with the use of any single system (see
e.g. Farrel and Barth [14], Grewal et al. [15]).

However, for UAVs with GPS-aided inertial navigation sys-
tem a loss of GPS signals can be extremely problematic and, in
the worst case, end up with a complete failure of the mission.
Reasons for GPS outages might be that satellite services are tem-
porarily unavailable or satellite signals are jammed. Recently,
spoofing has also come into the focus of unmanned flight systems
(a spoofing attack attempts to deceive a GPS receiver with manip-
ulated GPS signals hence pretending a false position). Both jam-
ming and spoofing have become a major concern of GPS users
due to the easy availability of technology on the market (see e.g.
Wright et al. [16]).

To overcome these problems, visual navigation is getting more
and more common for aiding inertial navigation systems (for
reviews of the applied techniques see e.g. Bonin-Font et al. [17],
DeSouza and Kak [18]). Visual navigation can cope with long-
term GPS outages. A significant advantage – compared to other
active approaches – is that visual navigation does not send out
any signals. Hence there is no danger of being detected by hostile

144 L. Babel / Robotics and Autonomous Systems 62 (2014) 142–150
Fig. 1. Landmark rosette with quality values and associated flight distances.

forces. Moreover, it cannot be jammed since it is not guided
by external signals. As a passive system it is less vulnerable to
malicious actions.

In recent years, a number of unmanned aircraft systems were
put into service which operate with landmark-based visual nav-
igation. This method provides navigation updates in certain in-
tervals. The idea is to estimate the position of the air vehicle by
matching a sequence of onboard images to a geo-referenced im-
age. The onboard images are taken from a downward looking in-
frared or visual camera which is mounted on the air vehicle. The
geo-referenced images are stored in the onboard computer before-
hand or downloaded during flight (see e.g. Cesetti et al. [19], Conte
and Doherty [20]).

Landmarks can be either natural (e.g. rivers, shorelines, forests)
or man-made (e.g. roads, railway tracks, crossings, significant
buildings, bridges). They have a fixed and known position, relative
to which the UAV can localize itself. The quality of a navigation
update is depending on static and dynamic properties which
includes

– the characteristics of the specific landmark (size, geometry,
structure, material, texture, etc.)

– the encounter situation (overflight direction, flight altitude,
camera’s angle of view, etc.)

– and the environmental conditions (weather, rainfall, air humid-
ity, temperature, visual range, etc.).

These properties are typically summarized in a landmark rosette
(see Fig. 1). In the example, an approach from direction North
yields quality value 0. This means that no navigation update is
possible. An approach from direction South–South–East yields
quality value 1 which corresponds to a perfect update. Reasons for
a low quality valuemight be that parts of the landmark aremasked
(e.g. by a forest or a large building) or the perspective is extremely
unfavorable.

According to the weather conditions, a landmark might have
different quality values. For instance, if the navigation system is
equippedwith a visual camera then a high-quality landmarkmight
become quite miserable if snowfall hides some of its characteristic
features and wipes off the contrast to the background. For an
infrared camera, a change of temperature can dramatically change
the quality values. This provides different landmark rosettes for
day and night, in sunshine or with overcast sky.

For the route planning of a UAV with landmark-based visual
navigation, the intervals between two navigation updates (i.e. the
distance between two consecutive landmarks on the flight path)
must not be too large. Due to IMU drift, the navigation error
increases with the length of the flight path. The next landmark
might be outside the camera’s field of view if the navigation error
becomes too big and the estimated position of the air vehicle is far
away from the real position. In this case the air vehicle gets lost.

We assume that the flight altitude over the landmarks is fixed.
The maximal allowed flight distance dist(L, α, ω) from a landmark
L with overflight direction α to the next landmark depends on the
quality value q of the landmark in direction α and the IMU drift,
i.e.

dist(L, α, ω) = f (q(α, ω)).

The allowed flight distances associated to a landmark are illus-
trated in Fig. 1. Note that the quality values, and hence the flight
distances, depend on the environmental conditions ω during the
mission.

3. Flight path optimization in scenarios with no-fly zones

A trajectorywill be called feasible if it avoids the no-fly areas and
flyable if it respects the flight performance of the air vehicle. Find-
ing a trajectory in a scenario with no-fly zones is an integral part of
our flight path planning problem. The associated subproblem can
be formulated as follows.

(RP)
Find a feasible and flyable trajectory of minimal length
from a start point P with specified velocity vector v⃗P to
a destination point Q with velocity vector v⃗Q .

This problem is referred to as the route planning problem (RP).
We represent the trajectory by a twice continuously differen-

tiable parametrized curve

γ (t) =

x(t)
y(t)

(1)

in the plane with parameter range t ∈ [0, T]. The curve must
comply with the start conditions

γ (0) = P, v(0) = γ̇ (0) = v⃗P (2)

and the destination conditions

γ (T) = Q , v(T) = γ̇ (T) = v⃗Q . (3)

For the acceleration in the endpoints we postulate

a(0) = v̇(0) = 0⃗, a(T) = v̇(T) = 0⃗. (4)

The kinematic and dynamic capabilities of the air vehicle are
modeled by the restrictions

vmin ≤ |v(t)| ≤ vmax, t ∈ [0, T] (5)

where vmin and vmax denote the minimal and maximal absolute
velocity of the air vehicle, and

amin ≤ along(t) ≤ amax, t ∈ [0, T] (6)

alat(t) ≤ âmax, t ∈ [0, T]. (7)

Here a(t) has been decoupled in longitudinal and lateral accelera-
tions. amin and amax bound the (linear) deceleration and accelera-
tion, respectively, and âmax the perpendicular acceleration. Finally

γ (t) ∉ Z1, . . . , Zm, t ∈ [0, T] (8)

must holdwhere Z1, . . . , Zm denote the no-fly zones of themission.
The goal is to minimize the length of the trajectory, i.e.

min
 T

0
|γ̇ (t)|dt.

For the solution of the problem (RP) we adapt an approach
which has been introduced recently in [11]. The idea is to discretize
the airspace by a very specific network. The network is character-
ized by the fact that each path in the network corresponds to a tra-
jectory which respects the kinodynamic restrictions (5)–(7) of the
air vehicle (such a trajectory is flyable) and which avoids the no-
fly areas (a trajectory fulfilling (8) is feasible). This allows to apply
standard network techniques, e.g. the algorithmof Dijkstra, the A*-
algorithm, or any other method (see e.g. Cormen et al. [21]) to find
a shortest path.

L. Babel / Robotics and Autonomous Systems 62 (2014) 142–150 145
Fig. 2. Line elements with flight path segments and no-fly zones.

The generation of the network starts by randomly distributing
a large number of line elements in the horizontal plane. A line
element consists of a position in the plane together with a velocity
vector whose length is equal to the nominal velocity v0 of the air
vehicle (in this sense, start and destination are also line elements
with velocity vectors v⃗P and v⃗Q). The second step is to connect
pairs of line elements by flight path segments. These paths must
be both flyable and feasible. The vertices of the network represent
the line elements, and two vertices are linked by a directed edge
if there is a flyable and feasible flight path segment connecting
the corresponding line elements. The edge cost is defined as the
length of the flight path segment. Here is a formal description of
the algorithm.

Algorithm Find-Trajectory

Input: Start P , destination Q , no-fly areas, flight performance data of UAV

Output: Flyable and feasible trajectory γ (t) from P to Q

1 Create vertices vP for start P and vQ for destination Q
2 V := {vP , vQ }, E := ∅

3 Generate line elements by randomly choosing position and direction
4 For each line element A
5 Create a new vertex vA, V := V ∪ {vA}

6 end
7 For each pair of line elements (A, B)
8 Generate a curve γAB(t) from A to B using quintic Hermite interpolation
9 Check γAB(t) with respect to feasibility and flyability
10 If γAB(t) is both feasible and flyable
11 Create a new edge (vA, vB) with cost c(vA, vB) :=

|γ̇AB(t)| dt ,

12 E := E ∪ {(vA, vB)}

13 end
14 end
15 Find a shortest path in the network G = (V , E, c) from vP to vQ

16 Concatenate the curves belonging to the path to a P–Q trajectory γ (t)

Themain principle is sketched in Fig. 2. The start point of the air
vehicle is located on the left, the destination point is on the right,
release and approach directions are both 0°. The figure shows line
elements (blue arrows) with some flyable and feasible flight path
segments in a scenario with three no-fly zones.

The flight path segments are generated by an iterative pro-
cedure using quintic Hermite interpolation. Let A and B be two
line elements with positions (xA, yA), (xB, yB) and velocity vectors
(vAx, vAy)

T , (vBx, vBy)
T . We define the acceleration in each line ele-

ment to be zero. A flight path connecting A and Bmust fulfill

x(0) = xA, x(tmax) = xB
ẋ(0) = vAx, ẋ(tmax) = vBx

ẍ(0) = 0, ẍ(tmax) = 0

and

y(0) = yA, y(tmax) = yB
ẏ(0) = vAy, ẏ(tmax) = vBy

ÿ(0) = 0, ÿ(tmax) = 0
where tmax defines the parameter range. If x(t) and y(t) are pre-
sumed to bepolynomial functions then these six conditions require
polynomials of degree 5. Let

x(t) = a5t5 + a4t4 + a3t3 + a2t2 + a1t + a0.

For t = 0 we obtain

a0 = xA, a1 = vAx, a2 = 0.

The remaining coefficients are obtained for t = tmax as the solution
of the linear system of equations tmax

3 tmax
4 tmax

5

3tmax
2 4tmax

3 5tmax
4

6tmax 12tmax
2 20tmax

3

 ·

a3
a4
a5

=

xB − xA − vAx tmax
vBx − vAx

0

.

The coefficients for y(t) are calculated analogously.
The parameter range tmax is identified with the flight time

along the curve. Since the flight time is not known in advance it
is determined by an iterative procedure. The procedure starts by
defining tmax as the flight time which is required for a straight
flight (with nominal velocity v0) from position A to position B. Each
iteration provides a new curve (as described above). By numerical
integration one obtains the length of this curve and – with v0 – a
new estimate of the flight time which can be used as parameter
range tmax in the next iteration. Usually, only very few iterations
are needed for a suitable parametrization of the curve. For more
details we refer to [11].

Finally, the flight path segment has to be inspected with regard
to flyability and feasibility. This is done by tracking the curve from
the start point (i.e. t = 0) to the endpoint (t = tmax) with a small
time increment and checking the restrictions (5)–(8). If one of the
restrictions is violated then the flight path segment is dismissed.

Due to the construction, each path in the network corresponds
to a flyable and feasible trajectory. Each trajectory consists of
a concatenation of flight path segments with line elements as
connection points. This guarantees that the transition between
adjacent flight path segments is smooth and without shock and
jerk.

4. Route planning with landmark-based navigation

Let γ (t) be a trajectory passing through a sequence of land-
marks L1, L2, . . . , Lk (see Fig. 3). The trajectory will be called
navigable if the flight distances between any two consecutive land-
marks allow a navigation update in each landmark. In this section
the route planning problem (RP) is extended to the route planning
problem with landmark-based navigation.

(RP-N)

Find a feasible, flyable and navigable trajectory of
minimal length from a start point P with specified
velocity vector v⃗P to a destination point Q with
velocity vector v⃗Q .

We explicitly emphasize that (RP-N) is a nontrivial task. The
problem is highly complex from a combinatorial point of view. It
includes

– selecting a set of suitable landmarks (from a pool of known
landmarks),

– finding the optimal sequence of landmarks appearing on the
trajectory,

– and choosing appropriate overflight directions.

A complete enumeration and evaluation of all subsets, sequences
and directions is unrealistic. The number of possible configurations
is extremely large and by far exceeds the available processing time.

146 L. Babel / Robotics and Autonomous Systems 62 (2014) 142–150
Fig. 3. Trajectory through a sequence of landmarks.

Fig. 4. Comparison of path-finding strategies.

On the other hand, naive approaches do not guarantee to find
optimal solutions.

Consider the simple but illustrative scenario in Fig. 4 which
allows to demonstrate different path finding strategies. Trajectory
(1) is obtained by applying any conventional route planning
algorithm. The route is not suitable for landmark-based navigation
since there are no landmarks on the track or even close to it. The
reason might be that the route leads across open water, across a
desert or a region without any significant landmarks. Trajectory
(2) is determined by an operator according to ‘‘best guess’’, i.e. a
sequence of landmarks is manually selected and connected by
shortest trajectories. This route is also not suitable since the flight
distance between the second and third landmark is too large to
allow a navigation update. Trajectory (3) is the result of a ‘‘Greedy’’
approach which proceeds stepwise from landmark to landmark.
The method selects, from the set of all reachable landmarks, the
one which is located closest to the destination. Unfortunately, this
method gets trapped at a no-fly area. Trajectory (4) is the optimal
solution.

Note that passing a landmark in the direction with highest
quality value is not always the best strategy. The difficulty is
illustrated in Fig. 5. Suppose that the left landmark has high
quality values in direction North which are decreasing towards
direction South. The trajectory emanating in direction North is
quite long. Direction North–North–East is blocked by a no-fly area.
The shortest trajectory comes from direction East–South–East.
However, in this direction the quality value might be too low for
a navigation update in the next landmark. Moreover, a shortest
navigable trajectory between two landmarks is not necessarily part
of a globally optimal solution.

We solve (RP-N) with a network-based approach. The first step
is the construction of a shortest-path-network. Each landmark is
represented by a set of vertices, one vertex for each overflight
direction. The edges represent shortest trajectories between the
landmarks, the edge costs are the lengths of the trajectories. The
trajectories are obtained by solving a series of problems of type
(RP). Here is a formal description of the algorithm.

Algorithm Generate-Shortest-Path-Network

Input: Landmarks L1, . . . , Lm

Output: Shortest-path-network G = (V , E, c)

1 V := ∅, E := ∅

2 For each landmark Li
3 For each overflight direction α
Fig. 5. Shortest trajectories between two landmarks.

4 Create a new vertex vi,α , V := V ∪ {vi,α}

5 end
6 end
7 For each pair of landmarks (Li, Lj)
8 For each overflight direction α of Li
9 For each overflight direction β of Lj
10 Find a feasible and flyable trajectory γ (t)

of minimum length
11 from (Li, α) to (Lj, β) by applying algorithm

Find-Trajectory
12 If γ (t) exists
13 Create a new edge (vi,α, vj,β) with cost

c(vi,α, vj,β) :=

|γ̇ (t)| dt ,
14 E := E ∪ {(vi,α, vj,β)}

15 end
16 end
17 end
18 end

Each path in this network corresponds to a flyable and feasible
trajectory. The twice continuously differentiable curves γ (t) are
connected at the landmarks. The transition between two curves is
smooth since the velocity is v0 and the acceleration is zero in each
endpoint (we assume nominal velocity v0 over the landmarks).

Note that, in operational use, the air vehicle should pass the
landmarks without strong maneuvers in order to keep the camera
stable. This is realized by our approach since the acceleration over
the landmarks is zero.

The second step is to include start and destination of the
mission in the network. For this purpose, we generate trajectories
from start point P to the landmarks and from the landmarks to
destination point Q .

Algorithm Connect-Endpoints

Input: Start P , destination Q , shortest-path-network G = (V , E, c)

Output: Completed shortest-path-network G̃ = (Ṽ , Ẽ, c)

1 Create vertices vP for start P and vQ for destination Q

2 Ṽ := V ∪ {vP , vQ }, Ẽ := E
3 For each landmark Li
4 For each overflight direction α

5 Find a feasible and flyable trajectory γ (t) of minimum length
6 from P to (Li, α) by applying algorithm Find-Trajectory
7 If γ (t) exists
8 Create a new edge (vP , vi,α) with cost

c(vP , vi,α) :=

|γ̇ (t)| dt ,

9 Ẽ := Ẽ ∪ {(vP , vi,α)}

10 end
11 Find a feasible and flyable trajectory γ (t) of minimum length
12 from (Li, α) to Q by applying algorithm Find-Trajectory
13 If γ (t) exists
14 Create a new edge (vi,α, vQ) with cost

c(vi,α, vQ) :=

|γ̇ (t)| dt ,

15 Ẽ := Ẽ ∪ {(vi,α, vQ)}

16 end

L. Babel / Robotics and Autonomous Systems 62 (2014) 142–150 147
17 end
18 end

In the third step all edges (trajectories) are deleted from the
network which are not navigable. Let γ (t) be a trajectory from
P to Q passing the landmarks L1, . . . , Lk at time t1, . . . , tk with
overflight directions α1, . . . , αk (see Fig. 3). Then γ (t) is navigable
if ti+1

ti
|γ̇ (t)| dt ≤ dist(Li, αi, ω), i = 1, . . . , k

and t1

t0
|γ̇ (t)| dt ≤ dist(P)

holds, where dist(P) denotes the maximal allowed flight distance
from start point P to the first landmark. dist(P) depends on the
navigation (position) accuracy at the release. The reduced network
consists of those trajectorieswhich are not only feasible and flyable
but also navigable. Now, the problem (RP-N) can be solved by
computing a shortest path.

Algorithm Find-Navigable-Trajectory

Input: Shortest-path-network G̃ = (Ṽ , Ẽ, c), maximal flight distances
dist(L, α, ω)

Output: Flyable, feasible and navigable trajectory γ (t) from P to Q

1 For each edge (vP , v) ∈ Ẽ
2 If c(vP , v) > dist(P)

3 Delete edge (vP , v) from the network, Ẽ := Ẽ\{(vP , v)}

4 end
5 end
6 For each edge (vi,α, v) ∈ Ẽ
7 If c(vi,α, v) > dist(Li, α, ω)

8 Delete edge (vi,α, v) from the network, Ẽ := Ẽ\{(vi,α, v)}

9 end
10 end
11 Find a shortest path in the network G̃ = (Ṽ , Ẽ, c) from vP to vQ

12 Concatenate the curves belonging to the path to a P–Q trajectory γ (t)

The algorithm finds a globally optimal solution provided that
algorithm Find-Trajectory solves (RP) to optimality. This is
ensured for a sufficiently fine discretization of the airspace, i.e. a
sufficiently large network.

Note that a straightforward implementation of the algorithms
is too slow for use in practice. In the next section we discuss
implementation details which significantly reduce the running
time.

5. Implementation

For the generation of the shortest-path-network, we have to
discretize the 360° circle into a reasonable number k of over-
flight directions (line 3 of algorithm Generate-Shortest-
Path-Network). Each landmark Li is then represented by k
vertices in the network. For each landmark pair (Li, Lj) one has to
find k2 shortest trajectories. Since a landmark rosette is usually
subdivided into 30° sectors with main directions 0°, 30°, 60°, . . .
(see Fig. 1) we accept these k = 12 directions.

Analyzing all pairs of landmarks (see line 7)would be extremely
time-consuming. Fortunately, it is sufficient to examine those
pairs which lie sufficiently close together. Let dmax(Li) denote the
maximal allowed flight distance from landmark Li which allows a
navigation update in the following landmark, i.e.
Fig. 6. Footprints of basic networks for flight path optimization.

dmax(Li) := max
ω

max
α

dist(Li, α, ω).

dmax(Li) assumes optimal environmental conditions ω and refers
to the optimal overflight direction α in Li. Obviously, a trajectory
from Li to another landmark Lj cannot be navigable if the Euclidean
distance between Li and Lj exceeds dmax(Li).

Let Lj be a landmark with distance less than dmax(Li). We
have to solve a series of route planning problems (RP) from Li
to Lj (lines 10–11) which differ only in the release and approach
directions. The positions of start and destination remain the same.
The solution of these problems is based on a common network
for algorithm Find-Trajectory (in the following referred to
as basic network). As described in Section 3, the vertices of the
network represent the (randomly distributed) line elements. The
line elements are spreadwithin an ellipse with focal points located
at the landmark positions and major diameter equal to dij =

max{dmax(Li), dmax(Lj)}. Obviously, each path from Li to Lj of length
smaller than dij lies completely within this ellipse. We call it the
footprint of the network (see Fig. 6). The network can also be used
to determine routes from Lj to Li. Note that a flyable trajectory
is also flyable in the reverse direction. On the other hand, this is
not the case for navigability. A navigable trajectory is not always
navigable in the reverse direction since navigability is depending
on the quality of the originating landmark.

The shortest path calculations between Li and Lj are performed
using the algorithm of Dijkstra. This algorithm finds shortest paths
from a single start vertex to a set of destination vertices (one-to-
many problem). In order to solve our many-to-many problem we
run Dijkstra’s algorithm for every vertex belonging to Li. We can
omit vertices with release direction α where maxω dist(Li, α, ω) is
smaller than the Euclidean distance between Li and Lj. In this case,
no navigable trajectory exists.

The implementation of algorithm Connect-Endpoints uses
the same ideas as described above.

For operational use of our approach, we propose a two-stage
process consisting of a preprocessing phase and an online planning
phase. This split is motivated by the idea to prepare whatever
is possible well in advance. The remaining work should allow
an extremely fast online planning. The preprocessing considers
data which are known a priori including the kinematics and
dynamics of the air vehicle, the position of the no-fly areas and
the characteristic properties of the landmarks. This phase does
not impose strong limitations on the computer running time. On
the other hand, the online planning phase should allow quick
reactions to changing scenarios. It considersmission data including
the position of the start and destination points with release
and approach conditions and the rapidly changing environmental
conditions.

Preprocessing Phase

1. Generate-Shortest-Path-Network

Online Planning Phase

148 L. Babel / Robotics and Autonomous Systems 62 (2014) 142–150
Fig. 7. Trajectories in Scenario (I) with high-quality landmarks (lower curve) and two degraded landmarks (upper curve).
Fig. 8. Trajectories in Scenario (II) with type N landmarks (lower curve) and type S landmarks (upper curve).
2. Connect-Endpoints

3. Find-Navigable-Trajectory

The result of the preprocessing phase can be considered as
part of a database for the mission planning system. The online
planning phase is performed immediately before launch of the
mission.

6. Computational results

The algorithms were implemented and visualized with Matlab
R2012a. The calculations were performed on a standard laptop
computer with 2.2 GHz Intel Core i7 CPU and 8 GB of RAM.

Scenario (I) is definedwithin an operational area of size 40 km×

8 km. It includes 3 no-fly areas and 10 navigation landmarks (see
Fig. 7). The start point P of the mission is located on the left with
release direction 0°. The destination point Q is on the right, the
direction of the approach is also 0°. For the air vehicle we assume
a nominal velocity of 30 m/s. The minimal and maximal velocity
is 25 m/s and 35 m/s, respectively. The lateral acceleration is
restricted by 20 m/s2.

In the first test case, it is assumed that all landmarks are of the
samequality. Themaximal allowed flight distance to the next land-
mark is 7 km, independent from the overflight direction. The op-
timization provides the lower (blue) trajectory. In the second test
case, the quality of landmarks L1 and L2 is degraded to a maximal
flight distance of 3.5 km. This enforces a significant detour around
the no-fly areas. Note that the asterisks on the trajectories indicate
the connection points of the flight path segments (obtained by al-
gorithm Find-Trajectory).

Scenario (II) contains 10 no-fly areas and 20 navigation land-
marks in an area of 70 km × 25 km (see Fig. 8). The nominal ve-
locity of the air vehicle is 100 m/s, minimal and maximal velocity
is 80 m/s and 125 m/s, respectively. The maximal lateral acceler-
ation is 40 m/s2. For this scenario we implemented two different
landmark types. Type N (resp. type S) represents a landmark with
optimal quality in overflight direction North (South) and decreas-
ing quality towards direction South (North).
The maximal flight distance dmax between two consecutive
landmarks is 14 km. This value holds only if the air vehicle
passes a landmark in a direction with optimal quality value. With
decreasing quality value q the allowed flight distance d also gets
smaller. For the following test cases we choose

d = dmax · q

as a distance function. For instance, a type N landmark allows a
maximal flight distance of 14 km to the next landmark if it is passed
in direction North (quality value q = 1.0). The distance is decreas-
ing to 7 km for overflight directions East andWest (q = 0.5). Pass-
ing a type N landmark in direction South (q = 0.0) does not make
any sense since the associated distance is zero.

In the first test case all landmarks are of type N. If the distance
from one landmark to the next landmark is large (close to dmax)
then the current landmark has to be passed in direction North or
close to North. This is clearly reflected by the obtained trajectory
(see the lower curve in Fig. 8). For example, the third landmark is
not passed using the shortest connection from West to East but in
a direction close to North since the fourth landmark is far away.
In the second test case, we provided the landmarks with quality
values of type S. In this case the situation is contrary. Large flight
distances require overflights in direction South (see the upper
curve of Fig. 8).

The shortest-path-network for Scenario (II) consists of 240 ver-
tices and almost 6000 edges. Algorithm Generate-Shortest-
Path-Network investigates 81 landmark pairs. Each of the
associated basic networks (see Fig. 6) consists of 500 line ele-
ments which result in up to 70 000 flyable and feasible flight
path segments. In both test cases, algorithm Find-Navigable-
Trajectory removes about 60% of the edges from the shortest-
path-network so that little more than 2000 edges remain. While
the preprocessing requires about 30 min, the computer running
time for the online planning is less than 2 s. It is worth mention-
ing that the quality of the solutions can be improved by increasing
the number of line elements in the basic networks. The enhanced
accuracy is achieved at the expense of growing preprocessing time.

Scenario (III) covers an operational area of size 100 km×35 km
(see Fig. 9). It contains 20 no-fly zones and 50 landmarks. The

L. Babel / Robotics and Autonomous Systems 62 (2014) 142–150 149
Fig. 9. Trajectories in Scenario (III) with high-quality landmarks (upper curve) and degraded landmarks (lower curve).
velocity of the UAV is restricted by 40 m/s and 60 m/s, respec-
tively, with a nominal velocity of 50 m/s. The lateral acceleration
is restricted by 15 m/s2. In the first test case the maximal flight
distance between two landmarks is 12.5 km (see the upper curve).
In the second test case, the quality of all landmarks is degraded to
70% which corresponds to a maximal distance of 8.75 km. This re-
sults in a zigzag course (lower curve). The preprocessing time is
about 40 min. Again, the online planning is extremely fast and re-
quires less than 3 s.

The computational effort of our algorithm depends, in par-
ticular, on the number of landmarks in the scenario and the
distance between them. The effort growswith the number of land-
marks. On the other hand, the effort is reduced with increasing
distance between the landmarks. The reason is that, for each
landmark pair (i.e. pairs which lie sufficiently close together, see
Section 5), the algorithm computes shortest trajectories for all
combinations of overflight directions. These trajectories are then
inserted as edges in the shortest-path-network. If the distances be-
tween the landmarks are large then the number of landmark pairs
is small.

To quantify how the effort increases with the density of the
landmarks, consider again Scenario (II). We added 10 landmarks
by distributing them randomly within the operational area. The
shortest-path-network has now 360 vertices and about 9000
edges, 129 landmark pairs are investigated. The preprocessing time
increases to 45 min, the online planning requires 2 s. Doubling
the number of landmarks to 40 provides a network with 480
vertices and more than 13 000 edges, with 186 landmark pairs to
investigate. The preprocessing requires more than 1 h, the online
planning less than 3 s.

7. Conclusion

In this paper we presented a network-based method to solve
the flight path planning problem for fixed-wing UAVs in scenar-
ios with obstacles. The main contribution is that not only the flight
performance, but also the navigational capabilities of the air ve-
hicle are taken into account. We considered UAVs equipped with
landmark-based visual navigation, a system which is less vulner-
able to hostile acts than GPS, since it is not guided by external
signals.

The computational complexity of the flight path problem usu-
ally requires some trade-off between accuracy and computation
time. However, practical applications often ask for high-quality
solutions while at the same time stipulating modest processing
times. Our algorithm performs all time-consuming tasks in a pre-
processing phase well in advance. This allows an extremely quick
online planning.

It is a common assumption in many papers that fixed-wing
UAVs fly with constant altitude. This seems reasonable in certain
applications such as searching an unknown terrain where the
sensor coverage region and sensor properties should be the same
everywhere. Another reason might be that an air vehicle achieves
its maximal range if the flight altitude is kept constant. Climbing
and diving is extremely fuel consuming, so that these maneuvers
are avoided as far as possible.

On the other hand, our approach can easily be extended to the
3D case. We let the UAV pass the landmarks in an altitude which
guarantees full functionality of the onboard camera and best pos-
sible navigation updates. The line elements representing the land-
marks get an additional height information and the flight paths
between the landmarks are generated in the three-dimensional
airspace. For instance, one might be interested in finding a
shortest trajectory over hilly terrain or, if the air vehicle is exposed
to unknown threats, realize a low level flight to benefit from terrain
masking effects (see [11]).

There are unresolved issues, for example concerning the
robustness of the approach. An unforeseen loss of visibility of
a landmark while following a pre-computed path could require
modifying thepath to anearby landmarkwhich allows anavigation
update. This implies a re-planning of the trajectory during flight.
Another challenge is to consider changing no-fly areas, e.g. due to
popup threats or unforeseen obstructions detected during flight.
These are interesting areas of future research.

References

[1] Z. Sarris, Survey of UAV applications in civil markets, STN ATLAS-3Sigma AE
and Technical University of Crete, DPEM, 73100 Chania, Crete, Greece, 2001.

[2] B.R. Donald, P.G. Xavier, J. Canny, J. Reif, Kinodynamic planning, J. ACM 40
(1993) 1048–1066.

[3] S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.
[4] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston,

1991.
[5] W.M. Carlyle, J.O. Royset, R.K. Wood, Routing military aircraft with a

constrained shortest-path algorithm, Mil. Oper. Res. 14 (3) (2009) 31–52.
[6] E. Rippel, A. Bar-Gill, N. Shimkin, Fast graph-search algorithms for general-

aviation flight trajectory generation, J. Guid. Control Dyn. 28 (4) (2005)
801–811.

[7] M. Zabarankin, S. Uryasev, R. Murphey, Aircraft routing under the risk of
detection, Nav. Res. Logist. 53 (8) (2006) 728–747.

[8] S.A. Bortoff, Path planning for UAVs, in: Proc. Am. Control Conf., Chicago,
Illinois, 2000, pp. 364–368.

[9] K.B. Judd, T.W. McLain, Spline based path planning for unmanned air vehicles,
in: AIAA Guid. Navig. Control Conf. Exhib., Montreal, Canada, 2000.

[10] C. Goerzen, Z. Kong, B. Mettler, A survey of motion planning algorithms from
the perspective of autonomous UAV guidance, J. Intell. Robot. Syst. 57 (2010)
65–100.

[11] L. Babel, Three-dimensional route planning for unmanned aerial vehicles in a
risk environment, J. Intell. Robot. Syst. 71 (2) (2013) 255–269.

[12] K.R. Britting, Inertial Navigation Systems Analysis, John Wiley & Sons, New
York, 1971.

[13] D.H. Titterton, J.L. Weston, Strapdown Inertial Navigation Technology,
Institution of Electrical Engineers, Stevenage, UK, 2004.

[14] J. Farrell, M. Barth, The Global Positioning System and Inertial Navigation,
McGraw-Hill, New York, 1998.

[15] M.S. Grewal, L.R. Weill, A.P. Andrews, Global Positioning Systems, Inertial
Navigation and Integration, John Wiley & Sons, New York, 2007.

http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref2
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref3
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref4
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref5
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref6
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref7
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref10
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref11
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref12
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref13
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref14
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref15

150 L. Babel / Robotics and Autonomous Systems 62 (2014) 142–150
[16] D.Wright, L. Grego, G. Gronlund, The Physics of Space Security, CambridgeMA,
2005.

[17] F. Bonin-Font, A. Ortiz, G. Oliver, Visual navigation for mobile robots: a survey,
J. Intell. Robot. Syst. 53 (3) (2008) 263–296.

[18] G.N. DeSouza, A.C. Kak, Vision for mobile robot navigation: a survey, IEEE
Trans. Pattern Anal. Mach. Intell. 24 (2) (2002) 237–267.

[19] A. Cesetti, E. Frontoni, A. Mancini, A. Ascani, P. Zingaretti, S. Longhi, A
visual global positioning system for unmanned aerial vehicles used in
photogrammetric applications, J. Intell. Robot. Syst. 61 (2011) 157–168.

[20] G. Conte, P. Doherty, Vision-based unmanned aerial vehicle navigation using
geo-referenced information, J. Adv. Signal Process. (2009) 18. Article ID
387308.

[21] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
third ed., MIT Press, Cambridge, 2009.
Luitpold Babel studied mathematics and received his
diploma in 1987 and his doctorate degree in 1990, both
from the Technical University Munich, Germany. Follow-
ing research positions at the Old Dominion University,
Norfolk, USA and University Graz, Austria, he achieved
his habilitation in 1997. The main focus of his work was
on problems of combinatorial optimization and algorith-
mic graph theory. From 1999–2006 he worked in the mis-
sile industry where he joined research and development
teams of different subsidiaries of the companies EADS and
MBDA. Since 2007he is a full professor ofmathematics and

computer science at theUniversity of theGermanFederal Armed Forces (Universität
der Bundeswehr) inMunich, Germany. His research interests includemathematical
methods in defense analyses, route planning of autonomous systems, and mission
planning for guided missiles and unmanned air vehicles.

http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref16
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref17
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref18
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref19
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref20
http://refhub.elsevier.com/S0921-8890(13)00221-2/sbref21

	Flight path planning for unmanned aerial vehicles with landmark-based visual navigation
	Introduction
	Landmark-based navigation
	Flight path optimization in scenarios with no-fly zones
	Route planning with landmark-based navigation
	Implementation
	Computational results
	Conclusion
	References

